Posts Tagged ‘Solar PV’

A Year of Solar Energy

November 8, 2021

Friends, it’s just coming up to the anniversary of the installation of solar photo-voltaic (PV) panels at Podesta Towers in Teddington. So I thought it might be interesting to see what a year of generation has brought.

First I’ll describe the installation; then explain what I expected (or at least hoped for); and then outline what has actually happened together with a discussion of the role of our domestic battery.

And finally I’ll remind you – and myself – of how solar panels fit into to my efforts to reduce carbon dioxide.

But in case you’re short of time, here are the salient points.

  • 12 solar panels generated just over 3500 kWh of electricity which is close to last year’s total domestic consumption ~3700 kWh.
  • This will have avoided emission of ~0.8 tonnes of carbon dioxide this year.
  • On the sunniest days the system generated ~25 kWh/day and in mid-winter average generation was ~ 2kWh/day which compares with around 10 kWh/day of non-heating electrical use.
  • When used with a battery, we were substantially off-grid for around 4 months.

1. The Installation

I described the installation in some detail here, but briefly it consists of 12 panels from Q-Cells, each 1.0 m x 1.7 m in size with a nominal generating power of around 340 W. I think this year’s versions are already more powerful!

Click for a larger image. Google Maps view of my home showing the shape and orientation of the available roofs. And photographs before and after the installation.

The installation cost £4,230 pounds which did not include the cost of scaffolding which was already up on the house at that point.

I chose Q-cells panels because I liked their completely black appearance; they seemed adequately specified; they were readily available; and they were cheap – around £130/panel if I recall correctly.

I later found out that they have pleasingly low embodied carbon dioxide, less than 1.6 tonnes for this installation, and so the embodied carbon dioxide payback time will be around 2 years. Q-cells also score highly for the not producing toxic waste.

2. What did I hope for?

The quotation from local installer GreenCap Energy included an estimate of the expected output – 3780 kWh/year.

But rather than trust the installer I downloaded data from an EU project that cleverly allows one to estimate how a particular solar installation with an arbitrary location and orientation would have performed hour-by-hour over the entire period from 2005 to 2016. This data suggested I might reasonably expect 3847 ± 173 kWh/year.

Click for a larger image. Estimates from an EU re-analysis project of what my solar panels WOULD have generated over the years 2005 to 2016. Year-to-Year variability appears to be about 5%.

I then averaged these 11 years of hour-by-hour data to yield my estimate for the expected monthly performance. They are shown as yellow dots on the graph below.

Click for a larger image. Expected generation in kWh per day. The yellow dots are the monthly averages of the estimated generation from 2005 to 2016. The green dotted line is a crude guess based on a ‘sine-squared’ function. The red dotted line shows our typical average daily electricity consumption ~10.5 kWh/day.

One feature of the simulated data is that the peak generation is expected to occur from April to July – a range which is not centrally arranged around the longest day (June 21st).

3. What happened?

Solar generation was broadly in line – but a little lower – than expectations. But the day-to-day and week-to-week variability was much greater than I had appreciated.

This variability makes it hard to plot readable graphs because they look chaotic! So let me introduce the data one stage at a time.

Looking at the monthly averages (below) we see that most months were close to expectations, but April was especially sunny, and August was a bit disappointing. So far, November has been a brighter than normal. Please note, the December data is from December 2020, because the data from December 2021 is not yet available.

Click for a larger image. Comparison of monthly averages of actual solar generation (green dots) with expected generation in kWh per day. (yellow dots). The black error bars show the standard deviation of that months daily data.

Now let’s additionally plot the daily data.

Click for a larger image. Similar to the graph above but now additionally showing the actual daily solar generation (kWh/day)

A few features of the daily data are really quite remarkable.

  • Firstly, the day-to-day variability is large. This means that the solar generation on a given day is almost no indication of the likely generation on the next day.
  • Secondly, the peak generation of around 25 kWh/day can occur in either April or July despite the substantial differences in day length and solar path.
  • Thirdly, even in mid-summer there can be runs of several utterly miserable days with very little solar generation.

If we average the daily data over a week, (see below) then we still see variability – deviations from the nominally-expected generation – which deviate from the expected generation consistently over periods of up to 3 weeks

Click for a larger image. Similar to the graph above but now additionally showing the ±3 day average of the generation as pink or purple lines.

Another way to look at the data which emphasises the trend more strongly than the variability, is to show cumulative generation through the year.

Click for a larger image. Cumulative generation (kWh) shown as a blue line against nominal expected generation.

Actual generation (just over 3500 kWh) is about 8% lower than I expected, but I am not especially surprised.

It could be that 2021 was a ‘a bit dull’ over the summer months when most generation takes place, or because I had incorrectly allowed for losses at the inverter – which converts DC electricity into AC mains electricity.

Battery

The PV panels were installed in November last year and to our surprise they immediately made a measurable difference – reducing our use of electricity from the grid by around 2 units per day.

Click image for a larger version. Daily electricity usage (from a smart meter) before and after solar panel installation.

However, it was not till our battery was installed in March 2021 that the transformational power of solar became apparent. Within a couple of days, the household went ‘off-grid’ and remained off-grid for around 80 days.

Click image for a larger version. Daily electricity usage (from a smart meter) since solar panel installation. Install the panels led to a small reduction in grid use. Consumption rose over Christmas. Consumption began to fall as we entered spring, and then fell to zero once we installed the battery. As we enter Autumn and Winter grid consumption is rising because since July we are using electricity to power a heat pump which heats the house and provides hot water. The bold green line shows the daily consumption averaged over ± 1 week.

As we enter autumn and winter, the solar cells still contribute significantly – 48% of our electricity in October was solar. But generation will be just around 2 kWh/day through November, December and January.

Since July, the ASHP installation has been using ~1.5 kWh of electricity a day to provide ~4 kWh of domestic hot water.

Now (November) the ASHP is providing space heating within the house, and in the coldest weather (~0°C) I expect  this will require an additional 15 kWh/day of electricity to provide ~50 kWh/day of heating. Most of this electrical energy will be downloaded at cheap rates overnight.

Summary

The PV and battery system has been installed to reduce carbon dioxide emissions from the house. They are the part of a suite of measures to reduce heating demand, eliminate gas use, electrify heating and increase the use of renewable energy.

Together they have dramatically reduced the running costs of the house.

The graph below shows expected household carbon dioxide emissions (not including consumption or travel) over the period up to 2040.

Click image for a larger version. Anticipated household carbon dioxide emissions (not including consumption or travel) over the period up to 2040. The red line shows what would have happened if I had made no changes. The green line shows the expected outcome.

In the short term, all the actions I have taken have made things worse!

The embodied carbon dioxide in the solar panels, insulation, batteries, and heat pump amounts to ~11.5 tonnes, and this ‘debt’ will not be re-paid until the end of 2023.

I would love to add more solar panels, but I am resolved to hold off until my existing carbon dioxide debt is re-paid.

Overall, I hope you can see that the solar panels are central to the plan to reduce anticipated emissions by 60 tonnes by 2040

 

Battery Day: First Results

March 20, 2021

Me and my new Tesla. This unit contains 13.5 kWh of battery storage along with a climate control system to optimise battery life. We have placed it in the porch so that (when visits are allowed again) everyone who visits will know about it!

Last September, Tesla held their ‘Battery Day‘ during which they unveiled their road map towards cheaper, better, batteries.

Not to be outdone, last Monday VW held their own ‘Battery Day‘ during which they unveiled their road map towards cheaper, better, batteries.

And last Thursday was my own battery day, when Stuart and Jozsef from The Little Green Energy Company came and installed a Tesla Powerwall 2 at Podesta Towers in Teddington. I was (and still am) ridiculously excited.

I am still evaluating it – obviously – but here are a couple of notes.

How it works

The system has two components. An intelligent ‘gateway’ that monitors loads and supplies, and a climate-controlled battery storage unit.

Click for a larger version. The left-hand graphic shows how AC power enters our house, and how DC power generated by solar panels is linked to the grid. When the Solar PV is sufficient ,power is exported to the grid. The right-hand graphic shows how the TESLA ‘gateway’ device monitors the solar PV, domestic loads and battery status and intelligently decides what to do.

The gateway (and the battery) are electrically situated between the electricity meter and all the loads and power sources in the house. So all energy enters or leaves the battery module as AC (alternating current) power.

But its internal batteries must be supplied with DC (direct current).

This makes it ideal for storing power from the AC grid, but less than ideal for storing the DC current generated by solar PV panels.

One might have expected that a device designed to store solar power might intrinsically operate using DC and indeed, some battery systems – positioned between the solar PV and the inverter – do this.

So the choice to place the Powerwall™ where it is, is a compromise between the extra functionality this location offers – it can back up the entire house – and the inefficiency of storing solar PV which is first converted to AC by the inverter, and then re-converted back to DC by the Powerwall. The support document states that the conversion from AC to DC and back to AC has 90% round-trip efficiency.

The photograph below shows the gateway installed under the stairs in our house.

Click for a larger version. The Tesla ‘Gateway’ installed in our house. The unit is positioned in between the electricity meter and all the domestic loads. The black conduit leads under the floor to the battery which is installed in the porch.

Control

The system is controlled by an app which is – frankly – mesmerising. It shows how electrical power flows between:

  • the grid,
  • the battery,
  • our home, and
  • our solar panels

Click for a larger version. Screenshots from the app at various times yesterday.

There is less room to adjust the parameters of the system than I had anticipated. This appears to be because, in exchange for a guarantee that the battery will retain at least 80% capacity (10.8 kWh) after 10 years, one is required to relinquish detailed control to the Tesla Brain.

Through a built in network connection, the device is in constant touch with Tesla who monitor its performance and can detect if it is abused in some way. I am not sure how I feel about that – but then guaranteed long-term performance is certainly worth something.

One feature of this relinquishing of detailed control concerns ‘time-of-use’ tariffs. I anticipate that – especially in winter – I will need to charge the battery overnight on cheap rate electricity.

The system supports this mode of operation but is not yet operational. Apparently it needs to study the patterns of household use for 48 hours before being enabled.

When operational, one gives the system general instructions and then allows it to choose when, and by how much, to charge. There is for example no way to force the battery to charge to 100% on command.

In practice I suspect it will be fine, but at the moment it still feels a little weird.

Performance on Day#1

The simplest way to show how the Powerwall™ works is by looking at the data which the ‘App’ makes available.

The first graph shows the household demand through the day. It’s fascinating to look at this data which has 5 minute and 0.1 kW resolution. The metrologist in me would like more – but in honesty, this is enough to understand what is happening.

Click for a larger graph. See text for details.

Now we can look to see how that demand was met. Overnight, we relied mainly on the grid.

Click for a larger graph. See text for details.

The battery could have supplied this overnight electricity, but it had been set to hold a reserve of 16% of its capacity (~2 kWh) in case we required backup after a power cut. We have lowered that setting now because, thankfully, power cuts are rare in Teddington. The battery drew power from the grid overnight in two short periods to maintain this reserve.

Additionally, at the end of a sunny day in which the solar PV filled the battery, there was brief period where we returned electricity to the grid.

During the day – which was very sunny 🙂 – the household electricity demand was met by the electricity from the solar panels.

Click for a larger graph. See text for details.

Without the battery, most of this 16.91 kWh of electricity would have been sent to the grid. But now only a tiny fraction was returned to the grid, most of it being captured by the battery – see below.

Click for a larger graph. See text for details.

The graph above shows the battery maintaining its reserve charge at night, and then charging from the solar PV during the day. At peaks of household demand, the charging is paused. At around 16:00, the battery was briefly full, and shortly thereafter it began discharging to meet household demand.

As I write this at 1:00 p.m. on the day after the day shown (a rather dull day 😦 ), the battery is 56% full and charging.

The graph below shows all the above curves together.

Click for a larger graph. See text for details.

Overall

The Powerwall system is an object of wonder. It is beautifully engineered and miraculous in its simplicity.

It transforms the utility of the solar PV allowing me (rather than electricity companies) to benefit from the investments I have made.

I will post more about the performance in terms of cost, electricity and carbon dioxide when I have more data.

But for the moment I will just thank Jozsef and Stuart from The Little Green Energy Company for their professionalism and attention to detail. And ‘No’. I am not being paid to say that – quite the opposite!

Stuart and Jozsef from The Little Green Energy Company. You can’t see it, but they assure me they were both smiling. Click for a larger version

 

Domestic Batteries: Purchase decisions and realistic models

February 1, 2021

Friends, earlier this week I ordered a Tesla PowerWall 2 from the charming people at The Little Green Energy Company (TLGEC). They have given me a nominal installation date in late March 2021 and I will be sure to keep you updated.

So in my excitement I wrote another article about using batteries – and you can read it at length below. But AFTER I had spent hours calculating and graphing , I realised something very obvious but very profound.

  • The triple-glazing and external wall insulation have been ‘green’ investments. They avoid the need to burn fossil fuels.
  • The solar panels have been a ‘green’ investment. They produce low-carbon electricity.
  • The heat pump (when I install it) will be a ‘green’ investment. It will avoid the need to burn gas to heat the house.
  • But the battery is a financial investment. It will actually use extra electricity! However, it will lower the cost to me personally of making the ‘green’ investments.

My aim is to transition away from burning gas by using a heat pump. This switch requires me to use more electricity each year and without the financial savings that a battery yields this would be punitive.

More battery modelling: but using a climate re-analysis database!

I chose TLGEC over other installers because of their willingness – and ability – to answer tricky questions. And in one of their answers they gave me a jewel of link to this EU funded site with useful information about solar PV.

The site can be used like others to estimate the monthly generation from a solar PV installation. But unlike other sites the predictions are based on actual solar data over the period 2005-2016.

And uniquely – by using climate re-analysis –  it is possible to download this data for any location on Earth (!) to simulate hour-by-hour how a particular installation of panels would respond at any time during that period.

Click for a larger image. This web portal is available here.

This has enabled me to create models simulating the interaction of solar panels with a domestic battery similar to those I made previously. But instead of:

  • a minute-by minute model of a single day using simulated solar data,

I can now make…

  • an hour-by-hour model of an entire year using actual solar data.

Crucially this incorporates real-world (hour-to-hour and day-to day) variability which is one of the difficulties in trying to optimise the use of a battery.

The Model 

The Excel™ model (Solar Time Series Analysis 2005 – 2016 for Blog) is based (unsurprisingly) on a Tesla Powerwall 2 with 13.5 kWh of storage, but that can be changed in the file. Please note – this is not a simple model and is set up just for my panels in Teddington! If you want to use it for your site you will need to download data from the web portal above and place it in the spreadsheet.

The model has the following ‘features’ (default values shown in brackets)

  1. The electrical demand can have separate daily peak (1 kW) and off-peak (0.5 kW) values.
  2. The overnight charging rate can be changed (3 kW)
  3. The fractional filling of the battery in the morning can be changed seasonally between a summer value (100%) and a winter value (100%).
  4. The range of the ‘summer’ and ‘winter’ seasons can be defined (summer runs from day 60 to day 300)

The model evaluates:

  • The state of the charge of the battery hour-by-hour through the year,
  • The amount of peak and off-peak electricity which must be purchased to meet the required demand.
  • The amount of solar generation and the amount used on site, or exported.
  • The costs of different strategies.

One shortcoming of the model is that the 1-hour step is too long and so in some situations the model appears to overfill or underfill the battery. However I think the uncertainty this adds is relatively small.

The Parameters

I set the model to run with data both from individual years and from the average behaviour of all 12 years of data.

The demand I modelled was 0.5 kW overnight and 1 kW during the day. This is more than our house uses at present but is in line with the demand I expect when I install a heat pump to replace the gas boiler.

The model calculates the amount of electricity bought from the grid in both peak and off-peak periods and evaluates the fraction of demand met by solar electricity, and the cost.

I then investigated how different settings for the morning filling of the battery affected:

  • the amount of electricity bought from the grid (peak and off-peak) over the year,
  • the fraction of demand met by solar electricity,
  • the cost.

Typical Runs

The graph below shows the simulated State of Charge (SoC) of the battery during days 1 to 30 of the year 2016 i.e. January 2016.

Click for a larger view.

The graph shows daily overnight charging of the battery to 100% in the morning. The 1-hour time resolution of the simulation makes it appear the battery does not quite completely fill up, but it gets close.

The 1 kW daytime load then drains the battery completely on most days – the SoC reaches zero – and so some full price electricity must be bought.

However, there are a few days (e.g. days 7 & 8 and days 13 to 16) even in January in which strong sunlight fills the battery sufficiently that it lasts to the end of the day. These would typically be cold, crisp, clear winter days.

To indicate the variability, the equivalent graph for the year 2011 is shown below.

Click for a larger view.

But if we plot the average data from 2005 to 2016 we see it has a different character from that for individual years. Instead of the 3 or 4 bright sunny days, we have – on average – a little bit of sunshine on many more days.

Click for a larger view.

This difference between individual years and their average is important in this case, because it the intermittency of solar generation that makes a battery useful, and it is the irregularity of solar generation in any one year that makes it hard to optimise the use of a battery.

A whole year of averaged data is shown in the graph below. I have used average data to illustrate the general characteristics of the behaviour of the battery.

Click for a larger view.

In this graph the battery is charged each night to 100% SoC. In the winter it discharges through the day and the SoC reaches zero before the end of the day, requiring full price grid electricity to tide the household over to the end of the day and the start of cheap electricity.

But between days 60 and 300 there is enough solar generation – on average – such that the battery does not ever fully discharge at the end of each day. Thus in this period is not really necessary to fully charge the battery overnight.

The graph below shows the effect of only charging the battery to 70% in the mornings over this ‘summer’ period.

Click for a larger view.

The result of this is that less night-time electricity is used, and less electricity is exported. Consequently, the ‘self-use’ of solar electricity increases. However, there are now a few more occasions during the ‘summer’ when the  SoC reaches zero before the end of the day i.e. where full price electricity must be bought.

The graph below shows the same partial-charging strategy (only 70% between days 60 and 300) but using data for the year 2011: notice that the irregularity is much greater than when looking at the averaged data.

Click for a larger view.

So how does one make sense of all this? I do not want to spend my entire life optimising battery charging!

Basic Results

There are too many variables to succinctly summarise the modelling results, so here I will just summarise one investigation relevant to my own situation.

Imagining that I am running a heat pump to replace the gas boiler, I have assumed overnight use at 0.5 kW and daytime use at 1.0 kW. This amounts to 21 kWh/day or 7665 kWh/year. Due to the limited time step, the model calculates annual use as 7661 kWh – which is an error of 0.05%.

Using the solar data for each individual year – and for the average of all the years – I calculated how self-use of solar power varied as I changed the state of charge (SoC) of the battery in the morning from 0% to 100%.

By ‘self-use’ I mean that the solar electricity was either used immediately at the house or stored in the battery for later use. Nominally either of these uses is ‘free’, but in reality the storage and retrieval is only around 90% efficient.

Result#1

First of all looking at solar data from each year 2005 to 2016 I calculated that on average the panels would generate 3847 kWh/year with a standard deviation of about 5%. The average value is same as is calculated from just using the average 2006-2016 datset

Click for a larger view.

The solar generation is only around half of the anticipated demand (see below). And without a battery, most of that is exported at a relatively low price (1.8 p/kWh from EDF). This benefits the planet and EDF, but means I still have to pay EDF 23.7 p/kWh for peak time electricity to operate the heat pump.

Click for a larger view.

Next – using the solar data for each individual year – and for the average of all the years – I calculated how self-use of solar electricity varied as I changed the state of charge (SoC) of the battery in the morning from 0% to 100%.

Click for a larger view. The graph shows the number of units of solar electricity (kWh) that would have been used on site.

If we pick one year (say 2014) as an example, we that in this sunnier-than-average year, charging the battery to about 30% SoC in the morning leaves plenty of capacity to store solar electricity during the day.

In a more typical year (say 2016) the optimum morning SoC is between 40% and 50%.

  • Higher morning SoC results in solar generation being ‘lost’ to export.
  • Lower morning SoC will give rise to earlier discharge of the battery and the use of more mains electricity.

Curiously, the optimum morning SoC for any individual year (30% to 60%) is quite different from that calculated from the average of all 12 years. This is because of reduced irregularity in the averaged data.

The difference between self-use calculated from data for individual years and the self-use calculated from the average data is even more striking if we show each year’s result as a fraction of that year’s total generation.

Click for a larger view. The graph shows the fraction of total solar generation (%) that would have been used on site for each year.

We see that we might hope to get around 90% of self-use in any individual year with a morning SoC of around 40%. This is much lower than the 98% which appears possible using averaged data.

Results: Economics 101

As I whiled away happy hours with Excel I became fascinated by different possible strategies. And I filled my head with clever calculations that I might attempt.

But then I realised that none of these strategies affects the carbon reduction I achieve by installing solar panels. This happens with or without a battery and is independent of the charging strategy I adopt!

  • What these charging strategies affect is who gets the benefit!

If I export electricity at low cost (1.8 p/kWh in the case of EDF) and am then forced to buy electricity later in the day for 23.7 p/kWh (EDF) then it is EDF who gets the benefit of my investment.

Financially, the optimum strategy arises from the differences between night-time and day-time electricity, and the price paid for exports. I have illustrated this for two ‘tariffs’ below – those from EDF and those from Tesla – who have a deal with Octopus.

Click for a larger view.

If I simply bought the electricity from EDF without solar panels, then the annual cost would be just over £1600.

The solar panels should reduce this cost substantially. The investment of £4200 in the solar panels should generate a saving of around £500/year, a 12% return on investment.

The battery should lower the annual cost much further. The savings generated by this £10,000 investment should be more than £800/year.

  • Using the EDF tariff, the big difference between the price of day-time and night-time electricity makes it always preferable to have a morning SoC as high as possible, thus minimising the possibility of ever having to use full-price electricity.
  • Using the Tesla tariff – the morning SoC doesn’t matter because there is no time-of-day price difference, and no difference in price between imports and exports.

But using either tariff, I calculate the savings to be massive. So large in fact that I just can’t believe them! The battery should be installed in March and I will let you know how it goes!

Of course I could also lower the cost by switching from EDF. I checked with Octopus energy (link) and it listed 80 different tariffs. Eighty! Enough for 10 octopuses to each have a tariff for each leg.  I absolutely detest this confusopoly. In any case the cheapest night time price was around 11p. Hopefully with the battery I will be able to subsist mainly on EDF’s night-time tariff.

Summary

So after all that work, I realised something very obvious but very profound. As I said at the top the article:

  • The triple-glazing and external wall insulation have been ‘green’ investments. They avoid the need to burn fossil fuels.
  • The solar panels have been a ‘green’ investment. They produce low-carbon electricity.
  • The heat pump (when I install it) will be a ‘green’ investment. It will avoid the need to burn gas to heat the house.
  • But the battery is a financial investment. It will actually use extra electricity! However, it will lower the cost to me personally of making the ‘green’ investments.

Solar Power in Teddington

February 20, 2011

 

New houses being built on Railway Road, Teddington

New houses being built on Railway Road, Teddington

Some new houses are being built on Railway Road, Teddington, at the back of my home on Church Road. The houses are being built  on a site which used to house garages, which themselves were put there in the place of houses destroyed by bombs in World War II. Searching on line I found this photograph which shows houses around 5 doors down from the bomb/building site. So much for the local history.

What I actually wanted to comment on was the fact these not very luxurious houses ALL have large expanses of solar panels built in.

 

Solar Panels on the roof of new houses in Teddington

Solar Panels on the roof of new houses in Teddington

Now these panels face west and this is not a superb site for solar panels. But I just wanted to comment on the fact that it is now part of normal building practice to put solar panels on new houses. Fifty years ago, when solar  panels were developed for spacecraft, only a zealot or a visionary would have suggested that this would become the orthodoxy. But it has, and we are living in that future now – where people build solar panels into modest houses in Teddington. And I mention this just to reinforce my faith that things do change. And that the world tomorrow can be different and better than the world today.  And who knows what will become the orthodoxy in 50 years from now?


%d bloggers like this: