Archive for the ‘Uncategorized’ Category

Is it hotter than normal?

June 21, 2017
MaxTemp_Average_1981-2010_June

This map shows how the average of the maximum daily temperature in June varies across the UK.

It was hot last night. And hot today. But is this hotter than normal? Is this global warming?

Human beings have a remarkably poor perspective on such questions for two reasons.

  • Firstly we only experience the weather in a single place which may not be representative of a country or region. And certainly not the entire Earth!
  • And secondly, our memory of previous weather is poor. Can you remember whether last winter was warmer or colder than average?

Personally I thought last winter was cold. But it was not.

Another reason to love the Met Office.

The Met Office have created carefully written digests of past weather, with month-by-month summaries.

You can see their summaries here and use links from that page to chase historical month-by-month data for the UK as a whole, or for regions of the country.

Below I have extracted the last 12 months of temperature summaries. Was this what you remembered?

  • May 2017: UK mean temperature was 12.1 °C, which is 1.7 °C above the 1981-2010 long-term average, making it the second warmest May in a series from 1910 (behind 2008).
  • April 2017: UK mean temperature was 8.0 °C, which is 0.6 °C above the 1981-2010 long-term average.
  • March 2017 :UK mean temperature was 7.3 °C, which is 1.8 °C above the 1981-2010 long-term average, making it the joint fifth warmest March in a series since 1910.
  • February 2017: UK mean temperature was 5.3 °C, which is 1.6 °C above the 1981-2010 long-term average, making it the ninth warmest February in a series since 1910.
  • January 2017: UK mean temperature was 3.9 °C, which is 0.2 °C above the 1981-2010 long-term average. It was a cold month in the south-east but generally milder than average elsewhere.
  • December 2016: UK mean temperature was 5.9 °C, which is 2.0 °C above the 1981-2010 long-term average, and the eighth warmest December in a series from 1910.
  • November 2016: The UK mean temperature was 4.9 °C, which is 1.3 °C below the 1981-2010 long-term average.
  • October 2016: The UK mean temperature was 9.8 °C, which is 0.3 °C above the 1981-2010 long-term average.
  • September 2016: The UK mean temperature was 14.6 °C, which is 2.0 °C above the 1981-2010 long-term average, making it the equal second warmest September in a series from 1910.
  • August 2016: The UK mean temperature was 15.5 °C, which is 0.6 °C above the 1981-2010 long-term average.
  • July 2016: The UK mean temperature was 15.3 °C, which is 0.2 °C above the 1981-2010 long-term average.
  • June 2016: The UK mean temperature was 13.9 °C, which is 0.9 °C above the 1981-2010 long-term average.

So all but one month in the last year has been warmer than the 1981 to 2010 long term average. It is almost as if the whole country were warming up.

But UK mean temperature is not we feel. Often we remember single hot or cold days.

So I looked up the maximum June temperature recorded in England or Wales for every year of my life.

Each point on the graph below may have occurred for just a day, or for several days, and may have occurred in a different place. But it is broadly indicative of whether there were some ‘very hot days’ in June.

June Maximum Temperatures

The exceptional year of 1976 stands out in the data and in my memory: I was 16. And 2017 is the first June to come close to that year.

But something else stands out too.

  • From 1960 to 1993 – the years up until I was 34 – the maximum June temperature in England and Wales exceeded 30 °C just 6 times i.e. 18% of the years had a ‘very hot day in June’.
  • Since 2001 – the years from age 41 to my present 57 – there were 10 years in which the maximum June temperature in the England and Wales exceeded 30 °C i.e. 63% of the years had a ‘very hot day in June’.

Similarly,

  • From 1960 to 1993 there were 6 years when the maximum June temperature fell below 26 °C  i.e. 18% of the years didn’t have any very hot days.
  • Since 2001 the maximum June temperature in the England and Wales has always exceeded 26 °C.

Together these data tell us something about our climate – our average weather.

They tell us that weather such as we are experiencing now is normal. But it didn’t used to be: our climate – our average weather – has changed.

Is this global warming?

Broadly speaking, yes. In our new warming world, weather like we are experiencing now is likely to be become more common.

More technically, global warming is – obviously – global and requires the measurement of temperatures all around the world. It also refers to climate – the average weather – and not individual weather events. So…

  • The fact that this year we have had exceptionally hot days this June is not global warming: indeed 1976 was hotter!
  • But the fact that exceptionally hot days in June have become more common is a manifestation of global warming.

P.S. This Met Office page shows all the weather ‘records’ so you can check for when new ‘records’ are likely to be set.

Be kind

May 16, 2017

impostor-syndrome-cartoon

Dear Reader,

Last week I attended a lunchtime seminar on ‘Imposter Syndrome‘.

The specifications of the syndrome seem to be rather broadly drawn, but roughly speaking, it involves ‘successful people‘ who are ‘unable to internalise, or feel deserving of, their success‘.

The seminar leader had many good quotes, but somehow missed out the genre-defining Groucho Marx quote:

I sent the club a wire stating, PLEASE ACCEPT MY RESIGNATION. I DON’T WANT TO BELONG TO ANY CLUB THAT WILL ACCEPT ME AS A MEMBER.

I should have felt more surprised that anyone turned up! But feeling persistent and unquenchable self-doubt is the ideal mental disposition for a person interested in precision metrology.

So it might not surprise you that the session was attended by some of the best scientists at NPL. At least, I think they are some of our best scientists. They might not feel the same way.

Coincidentally…

I came across the following tale from Neil Gaiman on Twitter.

“… Some years ago I was lucky enough to be invited to a gathering of great and good people: artists and scientists, writers and discoverers of things. And I felt that at any moment they would realise that I didn’t qualify to be there, among these people who had really done things.

On my second or third night there, I was standing at the back of the hall, while a musical entertainment happened, and I started talking to a very nice polite elderly gentleman about several things, including our shared first name. And then he pointed to the hall of people and said words to the effect of “ I just look at all these people and I think, what the heck am I doing here? They’ve made amazing things. I just went where I was sent.

And I said, “Yes, But you were the first man on the moon. I think that counts for something”

And so…

It is clear that “Imposter Syndrome” is a common cognitive bias in which people whom most people would consider to be “successful”, are unable to feel the positivity which we imagine would accompany such a designation.

Like most cognitive biases, this is something we can become aware of and transcend.

I am aware that I am ‘successful’. Indeed I am more “successful” than I ever aspired to be.

It would be invidious to list my own ‘successes’. Indeed, I put ‘successes’ in quotation marks, because what I think other people might imagine to be ‘my successes’ feel to me either like ‘good fortune‘ or ‘a narrow escape from failure‘.

I know I ought to feel successful. But that is not what I actually feel.

What I learn from this.

At the height of his Nobel-prize winning powers, Bob Dylan wrote:

There’s no success like failure, and failure’s no success at all

(Taken from the Book of Bob, Subterraneans, 19:65)

What I think his Bob’ness means by this is that the very idea of a person being “successful” is nonsense.

As we each travel the path from our birth to our death, to call people following one path ‘successful’ and people on other paths ‘failures’ would be bizarre.

Compassion for one’s fellow travellers should outweigh any illusion of success or failure.

And thinking of: my colleagues; acquaintances; the more senior and the more junior; the faster and the slower; women and men; even managers. And thinking of all their situations in life, and of how quickly our lives pass, I am reminded of another quotation:

Each person you meet is carrying a heavy load. Be kind. 

Perhaps this should read:

Each person you meet, even apparently successful people, may be carrying a heavy load. Be kind.

Wishing you every success.

With kind thoughts.

Michael

Reasons to be cheerful

May 6, 2017

My Grid GB 28 daysWhen everything feels rubbish, it is sometimes calming to remind oneself that progress in human affairs is possible.

Solar Energy in the UK!

Looking at the MyGrid GB site I notice that the longer brighter days are leading to significant solar power generation every day – the yellow in the figure above and below.

My Grid GB 48 hours

Over the last month, solar power has contributed more than 5% of the UK’s electricity supply. I find this truly astonishing.

The electricity comes from solar panels on people’s rooftops, and from large solar ‘farms’ – which can still be used to graze sheep!

It is clear that solar energy generation is well matched to the demand for electricity – peaking every day at around 1:00 p.m. BST.

Storing the energy

We could certainly generate two or three times as much solar energy as this with relatively low impact. But imagine how cool it would be if we could store some of that energy as it was generated, and then release it exactly when we most needed it.

Over the last year I have noticed that ‘energy storage’ has gone from being ‘a great thing if it existed‘ to ‘a reality on a small but ever-growing scale‘.

Here are five ideas I have seen recently. They don’t have much in common, but I am collecting them together simply to hearten myself.

One of the ideas pumps water as an energy storage medium, one compresses air, one uses ice, and another is just a big battery! And one is just a cool idea whose point I don’t quite understand!

Pumping Water

At the Dinorwig power station (earlier blog) water is pumped uphill at night and released at times of peak demand to generate electricity. Dinorwig stores approximately 10 GWh of energy with approximately 75% efficiency – enough to generate 1.8 GW of electricity for approximately 6 hours.

But sites such as Dinorwig are rare. What if the same trick could be done in a more mundane way?

Ars Technica describes a sweet idea in which 30 metre diameter concrete spheres – each containing a pump-generator set – would be placed deep underwater.

Positioned near a wind farm, wind-generated electricity could be used to pump water out of the sphere against the enormous head of a few hundred metres of water. When electricity was required, water could be let back in, generating electricity.

They report that each sphere could generate 5 MW for 4 hours. So a Dinorwig-scale installation would require 500 spheres – which would probably occupy about 1 square kilometre of sea bed.

German Undersea Spheres

Less practically, The Independent have a story describing an artificial island in the North Sea that could form a hub of a renewable energy facility.

NOrth Sea Island

I don’t quite know what the point of the island would be, but I love the sheer chutzpah of the proposal.

Compressing Air

Much more practically, the Hydrostor Terra company have a plan to store energy as compressed air in scale-able plants built by a lakeside.

Interestingly – and showing a reassuring contact with reality – they separately store and recover the heat generated  when the air is compressed. This is the key to getting a reasonable efficiency.

It would take perhaps a thousand of these systems to create a Dinorwig-scale storage facility. However, because the system is scale-able, small systems could be built and put into operation quickly, with the revenue being used to fund the creation of expanded storage over the coming decades.

This ‘scale-ability’ avoids the need for billions of pounds to be invested up front and is important for demonstrating new technologies.

Ice Batteries

In the here and now, I love this idea of power companies subsidising the purchase of equipment which will lower demand for electricity rather than simply building more capacity.

In this scheme, air conditioning plant is run off-peak to create a store of around 2 cubic metres of ice. The ice is then used to chill air at times of peak demand.

In a way this is really ‘demand management’ rather than ‘energy storage’, but it achieves the same effect.

Ice Storage

Tesla Batteries

And finally, the obvious idea of storing electricity in batteries! This story reports on an an actual real functioning 80 MWh storage facility in California that can deliver 20 MW of electricity for 4 hours.

It would take 120 of these installations to create a Dinorwig Scale facility, but because each unit can be built independently, it does not require investment at the same scale and risk as that required to build a Dinorwig.

Energy Storage has arrived

The problem of grid scale energy storage has many solutions, and they are available now using current engineering practices.

My hope is that the growth of energy storage will surprise me in the same way that the the growth of solar energy has suprised me.

I hope that one day soon I will look at the chart on MyGrid GB and see that the wind supply is smooth not spiky – and that solar power is supplying electricity after the sun has gone down!

How is knowledge lost?

April 20, 2017

At some point in the 1950’s the physics of the Greenhouse Effect was so uncontroversial in the United States that it was the subject of a children’s song. A really great song.

WARNING: This song contains a BANJO accompanimentWARNING

The song is on the You Tube link above and the lyrics are at the end of this article.

Written by folk-singer Tom Glazer, the lyrics show an excellent appreciation of the physics of the greenhouse effect.

After first describing how a greenhouse works, the song describes how the Earth is warmed by solar radiation

The atmosphere is like a greenhouse too
It lets most of the solar rays through
The surface of the Earth absorbs these rays
And re-radiates them as long heat rays

And then, in very sophisticated terms it describes the role of water vapour in the atmosphere

There’s vapour in the air, What does it do?
It doesn’t let the long heat rays pass through
Trapped by the vapour they bounce back and forth,
Re-radiated and re-absorbed

Did you read that?

re-radiated and re-absorbed

Tom Glazer is describing the basic physics of the MODTRAN model of atmospheric transmission! (Link).

Can you imagine a world where it is OK to say “re-radiated and re-absorbed” to primary school children?

Children who learned this song would have a better operational understanding of the physics of the greenhouse effect and global warming than a fair fraction of the population of this country or the USA!

But the terrible truth is that 60 years after it was written, this song and the knowledge it embodies has been lost to popular culture and become – apparently – controversial.

How did we lose this collective knowledge?

Lyrics

What does the glass of a Greenhouse do?
It lets the short solar rays pass through
The objects in the house absorb these rays
And re-radiate them as long heat rays

What does the glass of a Greenhouse do?
It doesn’t let the long heat rays pass through
Trapped by the glass they bounce back and forth,
Re-radiated and re-absorbed

Stay Stay, you long heat rays, Warm up the house on cold cold days
Stay Stay, you long heat rays, Warm up the house on coooooold cold days

The atmosphere is like a greenhouse too
It lets most of the solar rays through
The surface of the Earth absorbs these rays
And re-radiates them as long heat rays

There’s vapour in the air, What does it do?
It doesn’t let the long heat rays pass through
Trapped by the vapour they bounce back and forth,
Re-radiated and re-absorbed

Stay Stay, you long heat rays, Warm up the house on cold cold days
Stay Stay, you long heat rays, Warm up the Earth on cooooooold cold days

Weather Songs

Global Warming: we were warned.

April 2, 2017

Human beings – including the one writing this – often find it hard to grasp the rates of processes involved in Global Warming.

When thinking about the physics, there are three important rates to consider.

  • The rate at which human emissions have taken place.
  • The rate at which the emissions affect Earth’s temperature.
  • The rate on which human emissions will dissipate.

But we also need to consider one other ‘rate’:

  • The rate at which humanity can respond to a warning after it has been given.

Let’s look at each of these ‘rates’ in turn:

Rate of Emissions

We are emitting carbon dioxide into the atmosphere at an astonishing rate: about 33 billions tonnes of carbon dioxide every year.

Humanity's Cumulative Emissions of Carbon Dioxide expressed in two ways. The left-hand axis shows the data as a fraction of the emissions. The right-hand axis shows the data as billions of tones (i.e. Gt) of carbon.

The graph above shows data from the Carbon Dioxide Information Analysis Centre. It shows humanity’s cumulative emissions of carbon dioxide expressed in two ways.

  • The left-hand axis shows the data as a fraction of the emission up to 2013 (100%)
  • The right-hand axis shows the data as billions of tonnes (i.e. Gt) of carbon. Multiply this number by 3.67 to convert it to billions of tonnes (i.e. Gt) of carbon dioxide.

From the graph we can see that:

  • 80% of the carbon dioxide we have put into the atmosphere has been put there in my lifetime. I am 57.
  • Although climate emissions have stabilised in the last three years, this only means that the slope of the graph has stopped increasing.
  • Continuing at the current rate, every 7 years we will emit carbon dioxide equivalent to the entirety of human emissions from the dawn of time to the date of my birth.

Climate Impact

Below is the estimate of the Earth’s average surface temperature made by the team at the NASA GISS laboratory. Alongside the data is a trend-line smoothed over a 10 year period.

The temperature rise is shown relative to the average temperature over the period 1951 to 1980.

Global Land Ocean 10 year smoothing

  • The graph shows that since 1980, the temperature trend has been rising roughly linearly at about 0.02 °C per year i.e. 0.2 °C per decade, or 2 °C per century.

Carbon absorption

The 33 billion tonnes of carbon dioxide we emit annually into the atmosphere corresponds to about 9 billion tonnes of carbon – these are the units used in the info-graphic below.

Carbon_cycle

This image is from Wikipedia and was adapted from U.S. DOE, Biological and Environmental Research Information System. – http://earthobservatory.nasa.gov/Features/CarbonCycle/, Public Domain, Link All the numbers are in billions of tonnes of carbon (Multiply by 3.7 to obtain the numbers in billions of tonnes of carbon dioxide). Figures in red are human emissions.

Natural processes remove about 2 billion tonnes of carbon from the atmosphere each year by dissolving it in sea water. And a further 3 billion tonnes of carbon a year is removed by increased plant growth.

If we stopped emitting carbon dioxide now, then these processes would the lower the carbon dioxide concentration in the atmosphere back to 1960’s levels in about 100 years.

As a consequence of these slow rates of removal, we are already committed to many decades of further warming at a rate similar to that which we are experiencing already.

Summary. 

  • The bulk of human emissions have occurred relatively recently.
  • We are now in an era when the Earth’s surface is definitely warming.
  • When we eventually take action we will still experience warming for many decades more.

But we have known all this for a long time: at least 36 years

The process which limits our rate of response. 

Arguably, the emergence of ‘popular’ appreciation of the effect of carbon dioxide emissions can be timed to 1981, when James Hansen and colleagues published a landmark paper in Science 

The paper is complex, but readable. But in case you are busy, here are some extracts.

A 2 °C global warming is exceeded in the 21st century in all the CO2 scenarios we considered, except no growth and coal phaseout.

This is happening now.

Floating polar sea ice responds rapidly to climate change. The 5 °C to 10 °C warming expected at high northern latitudes for doubled CO2 should open the North-west and North-east passages along the borders of the American and Eurasian continents. Preliminary experiments with sea ice models suggest that all the sea ice may melt in summer, but part of it would refreeze in winter. Even a partially ice-free Arctic will modify neighbouring continental climates.

This is happening now well before CO2 concentrations have doubled.

The global warming projected for the next century is of almost unprecedented magnitude. On the basis of our model calculations, we estimate it to be ~2.5°C for a scenario with slow energy growth and a mixture of nonfossil and fossil fuels. This would exceed the temperature during the altithermal (6000 years ago) and the previous (Eemian) interglacial period 125,000 years ago, and would approach the warmth of the Mesozoic, the age of dinosaurs.

This is happening now, but the warming is faster than the ‘worst case’ scenario they envisaged.

Political and economic forces affecting energy use and fuel choice make it unlikely that the CO2 issue will have a major impact on energy policies until convincing observations of the global warming are in hand.

How true! And even after the observations have become convincing, ‘political and economic forces‘ are still resisting a change in fuel use.

In light of historical evidence that it takes several decades to complete a major change in fuel use, this makes large climate change almost inevitable. However, the degree of warming will depend strongly on the energy growth rate and choice of fuels for the next century. Thus, CO2 effects on climate may make full exploitation of coal resources undesirable.

An appropriate strategy may be to encourage energy conservation and develop alternative energy sources, while using fossil fuels as necessary during the next few decades.

In retrospect, we could not have asked for a clearer or more accurate warning or better advice.

As I look at it now, the physical rates of processes make this problem really difficult

But it is our inability to respond to warnings which makes this potentially insoluble.

All the warnings above have come to pass: Let’s hope the paper’s warnings about sea level rise prove to be less accurate.

Danger of rapid sea level rise is posed by the West Antarctic ice sheet, which, unlike the land-based Greenland and East Antarctic ice sheets, is grounded below sea level, making it vulnerable to rapid disintegration and melting in case of general warming.

The summer temperature in its vicinity is about -5°C. If this temperature rises ~5°C, de-glaciation could be rapid, requiring a century or less and causing a sea level rise of 5 to 6 m (55). If the West Antarctic ice sheet melts on such a time scale, it will temporarily overwhelm any sea level change due to growth or decay of land-based ice-sheets. A sea level rise of 5 m would flood 25 percent of Louisiana and Florida, 10 percent of New Jersey, and many other lowlands throughout the world.

Arctic Sea Ice update: everything is proceeding exactly as we had foreseen

March 25, 2017

Graph 2017

If you read The Guardian’s news coverage of the extent of Arctic Sea Ice, you might be forgiven for thinking that something special had happened.

Arctic ice falls to record winter low after polar ‘heatwaves’

They state that2017 is the third year in a row the Arctic’s winter ice has set a new low.“. And they quote the director of the US National Snow and Ice Data Centre (NSIDC) as saying

“I have been looking at Arctic weather patterns for 35 years and have never seen anything close to what we’ve experienced these past two winters,”. 

But the truth is simpler and can be seen and understood by a child.

The extent of Arctic Sea Ice is declining year on year.
It has been happening for a couple of decades and we have no reason to think it will stop. 

The graph at the head of the page shows the extent of Arctic Sea Ice in millions of square kilometres. This has been assessed by satellites* every day since 20th October 1978 and the data can be downloaded from here.

As the graph shows, each year the sea ice grows in the northern hemisphere winter by an astonishing 10 million square kilometres. And shrinks by a corresponding amount in the summer.

The graph shows that on average:

  • The maximum extent of the sea ice in winter has been falling by about 44,000 square kilometres every year.
  • The minimum extent of the sea ice in summer has been falling about twice as fast – by about 84,000 square kilometres every year.

So since 1979,

  • the extent of the winter sea ice maximum has fallen by about 1.6 million square kilometres  and,
  • the extent of the summer sea ice minimum has fallen by about 3.2 million square kilometres .

To put that into context, the 3.2 million square kilometres is about 12 times the land area of the UK – or roughly the land area of India.

The two graphs below show the decline in winter maxima and summer minima in more detail.

And what is clear is that the decline in Arctic Sea Ice this year is pretty much exactly what we would have anticipated.

Graph 2017-3

Graph 2017-2

What happens next?

Well, we are now talking about ‘the future’ so the answer has to be ‘nobody knows’.

But the trends look to be well-established, and in our best understanding, the ultimate cause of the decline – the warming of our planet’s surface – will not abate for many decades.

So eventually we will see the Sea Ice Extent fall to zero in the summer. Drawing a straight line through the data, one obtains an estimate of about 2065.

However many ‘so-called experts’ think that an ice-free summer will come much sooner. They argue that sea ice extent is a 2-dimensional measure of a 3-dimensional quantity – the volume of sea ice.

They argue that accompanying the decline in sea ice area, there has been a thinning of the sea ice.

Satellite measurements of sea ice thickness are relative new, and don’t yet show any clear trend. But despite that, scientists have been combining the sparse data that do exist with the data on sea ice area to produce an estimate for Sea Ice Volume . Their estimates are shown below.

Sea Ice Volume March 2017

Now we can see the true drama of the situation. While the sea ice minimum area has declined by approximately 30%, the sea ice minimum volume has declined by approximately 70%.

For this data, a linear decline no longer captures the trend of the data. Fitting a quadratic trend and extrapolating, the estimate of the date at which summer sea ice volume reaches zero moves forward from 2065 to 2021.

As I mentioned, we are discussing ‘the future’ so no-one knows what is really going happen: 2021 is probably too early, but 2065 is probably too late. This 2012 article discusses the complexities of this extrapolation in detail.

But as the trend continues, the likelihood is that the sea ice will become more fragile, and eventually it will become thin enough that even mild storms will break it up.

In our lifetimes** we will reach a condition where the sea ice in the northern hemisphere entirely melts every summer. The North Pole will have become the North Pool.

====================================================

*Reader: I had thought the measurement was made from analysing visual images, but in fact it is made using microwaves. The emission of microwaves from water and ice have different characteristic polarisations and the contrast allows the fraction of sea-ice to be estimated. Details here. Sorry for the initial mistake, and thank you to Victor Venema for spotting it.

**Reader: I hope your life is long and healthy.

Do you really want to know if global warming is real?

January 28, 2017

About a year ago, I thought that Climate Change Deniers had lost the argument.

I thought that we were all moving on to answering more interesting questions, such as what to do about it.

But it seems I was wrong. It seems that in this post-truth world, climate change deniers are uninterested in reality – preferring instead alternative facts.

I am left speechless in the face of this kind of intellectual dishonesty.

Actually I am only almost speechless. I intend to continue trying to empower people by fighting this kind deception.

Rather than trying to woo people over to my view, my aim is simply to offer people the chance to come to their own informed opinion.

See for yourself

As part of my FREE University of Chicago Course on Global Warming, I have been using some astonishing FREE software. And its FREE!

1

The ‘Time Series Browser’ allows one to browse a 7000 station subset of our historical temperature records from meteorological stations around the world.

  • The data are the local station temperatures averaged over 1 month, 1 year or 1 decade. Whichever you choose you can also download this data into a spreadsheet to have fun with on your own!
  • One can select sets of data based on a variety of criteria – such as country, latitude band, altitude, or type of geographical location – desert, maritime, tropical etc. Or you can simply pick a single station – maybe the one nearest you.

Already this is enormously empowering: this is the pretty much the same data set that leading climate scientists have used.

For this article I randomly chose a set of stations with latitudes between 20°N and 50°N.

7

The bold dots on the map show the station locations, and the grey dots (merging into a continuous fill in parts) are the available locations that I could have chosen.

The data from the selected stations is shown below.  Notice the scale on the left hand side runs from -10 °C to + 30 °C.

2

In this form it is not obvious if the data is warming or cooling: And notice that only a few data sets span the full time range.

So how do we discover if there are trends in the data?

The first step

Once you have selected a set of stations one can see that some stations are warm and others cool. In order to be able to compare these data fairly, we subtract off the average value of each data set between 1900 and 1950.

This is called normalisation and allows us to look in detail at changes from the 1900-1950 average independent of whether the station was in a warm place or a cold place.

3

Notice that the scale on the left-hand side is now just ± 3.5 °C.

The second step

One can then average all the data together. This is has the effect of reducing the fluctuations in the data.

One can then fit a trend-line to see if there is a recent warming or cooling trend.

5

For this particular set of stations its pretty clear that since 1970, there is a warming trend. The software tells me it is approximately 0.31 ± 0.09 °C per decade.

What I have found is that for any reasonably diverse set of stations a warming trend always emerges. I haven’t investigated this thoroughly, but the trend actually seems to emerge quite clearly above the fluctuations.

But you can check that for yourself if you want!

Is it a cheat? No!

You can check the maths of the software by downloading the data and checking it for yourself.

Maybe the data is fixed? You download the source data yourself – it comes from the US Global Historical Climatology Network-Monthly (GHCN-M) temperature data-set.

But accessing the raw data is quite hard work. If you are a newbie, it will probably take you days to figure out how to do it.

There is more!

This ability to browse, normalise, average and fit trends to data is cool. But – at the risk of sounding like a shopping channel advertorial – there is more!

It can also access the calculations of eleven different climate models.

For the particular set of stations that you have selected, the software will select the climate model predictions (a) including the effect of human climate change and (b) without including human-induced climate change.

For my data selection I chose to compare the data with the predictions of the CCSM4 Climate model. The results are shown below

6

You can judge for yourself whether you think the trend in the observed data is consistent with the idea of human-induced climate change.

For the particular set of stations I chose, it seems the CCSM4 climate model can only explain the data by including the effect of human-induced climate change.

But Michael: this is just too much like hard work!

Yes and no. This analysis is conceptually challenging. But it is not crazily difficult. For example:

  • Schoolchildren could do this with help from a teacher.
  • Friends could do it as a group and ask each other for help.
  • University students could do this.
  • Scout groups could do it collectively.

It isn’t easy, but ultimately, if you really want to know for yourself, it will take some work. But then you will know.

So why not have a go?  The software is described in more detail here, and you can view a video explaining how to use the software here.

[January 28th 2017: Weight this morning 71.2 kg: Anxiety: Sick to my stomach: never felt worse]

Still learning after all these years

December 31, 2016
David Archer teaching a course on Global Warming

David Archer teaching a course on Global Warming

I have had to teach myself the physics of global warming.

And as an autodidact, I have suffered from the misfortune of having been taught by an idiot.

So ‘attending’ an online course about Global Warming is a genuine pleasure: it is so much easier than teaching oneself!

All I have to do is to listen – and re-listen – and then answer the questions.

Someone else has selected the topics that they feel are most important and determined the order of presentation.

Taking the course on-line allows me to expose my ignorance to no-one but myself and the course-bot.

And in this low-stress environment it is possible to remember the sheer pleasure of just learning stuff.

On line courses

Using the FutureLearn platform, I have taken courses on Global WarmingSoil, and Programming in Python.

I have participated with dual aims. In part I have wanted to learn about the topic. But also I have been curious to experience ‘a course’ from a student’s perspective.

The current course uses the Coursera platform and is much more technical than any of the Futurelearn courses I have tried previously.

For me that’s fine, but my guess is that the mathematical level is somewhere between GCSE and ‘A’ level and many people would find that intimidating.

The course assessments are also genuinely challenging, requiring the use of quite complex online software, and implicitly, the use of a spreadsheet or calculator.

One pleasing aspect of the course – for me at least – is that the course lecturer (David Archer) basically stands in front of a blackboard and talks.

He dresses like a physicist, and sounds like a physicist, and makes mistakes on the blackboard – it’s just like being back at University!

And in the vacuum between Christmas and New Year it has been a pleasure to lose myself in this on-line world.

Continuous Professional Development

‘Attending’ this course has also had a curious personal resonance for me.

I recently applied to become a ‘Fellow’ of the Institute of Physics – I am currently ‘only’ a member.

I first filled out the application form in 2013 – three years ago – and I thought I was doing well until I came to the section marked ‘CPD- Continuous Professional Development’.

The section was marked with a stern warning that it was not optional. Unfortunately, I couldn’t think of a single word to put in the section. So I just forgot about the application.

Each year since I have re-visited the form and fallen at the same hurdle.

But this year I asked some colleagues for help. It turns out that attending courses like this is actually CPD!

Who knew!

 

 

Grandmother’s kilograms

December 28, 2016

weight-2016

One of the reasons that I feel better this Christmas than last is because I have managed to lose weight.

In the 11 months since the end of January 2016 my weight has fallen from about 88 kg to around 73 kg.

For US readers, that’s a weight loss of 33 pounds, and for older UK readers, that’s about two and a half stone. It is a transformative amount of weight to loose. I feel much better.

I mention it here, because I have showed similar graphs before. For example, in 2011 I wrote “The Mass of Sisyphus” which has a graph of my weight from 1995 to 2011 (Ages 35 to 51)

So I have achieved similar weight loss previously, but previously my weight crept back onto my body. However I don’t have any data about the times when my weight is increasing.

It is like the game of Grandmother’s Footsteps in which children have to sneak up on ‘Grandmother’ but they can only move when ‘Grandmother’ is not looking.

Similarly, my weight seems happy to stay still or indeed to go down, as long as I weigh myself every day. But when I stop weighing myself – it slowly creeps up on me in the most sinister way.

My conclusion is that in order to maintain my weight I need to weigh myself every day.

It is yet another example of the power of measurement: because it is not until one measures a thing that one can begin to understand it, and control it.

===================================================

The graph also shows the busy year I have had with trips to Canada just before the graph began, India, the USA (twice), Poland, Italy and Spain.

Irritatingly, each trip has broken my weight loss trend.

However another good feature of the year has been running. Compared with 2015, I have increased the distance I have run from about 14 km per month, to around 100 km /month.

running-record-2016

Running has helped keep anxiety at bay and happily I can take my running shoes with me when I travel.

This seems to have settled down into a routine, and although it seems quite sporty for a man of my age (57) it takes only just over two hours a week.

And as I have run more, even though I haven’t been trying to run faster, I found I have naturally speeded up.

running-speed

Looking at the graph I can see that even since July 2016 when my weight has been more or less stable, my speed has been slowly increasing.

So my aim for the new year is to keep on running – and weighing myself every day. And hopefully I will keep Grandmother’s kilograms from creeping up on me!

 

 

 

Happy Christmas 2016

December 24, 2016

christmas-card-2016-explosion-3

First of all, thank you for having taken the trouble to stop by.

I had been going to write my reflections on the year – but I am too tired, and too likely to say negative things. So I will put that off for now.

And looking back at my blog, I realise that I do feel better than I felt in 2013.

All the things I wrote back then are still true, and some even more so.

But my campaign to manage my own anxiety has partially alleviated their personal impact. So there are positives from the year!

But horrifically I also realise that I am struggling to complete exactly the same ‘3 month’ project that I was desperate to complete by last Christmas! Aargh

Hey Ho! “plus ça change, plus c’est la même chose!” Anyway, please allow me to wish you a…

…Happy Christmas, and a splendid 2017.

 

 


%d bloggers like this: