Archive for the ‘Personal’ Category

Mug Cooling: The Lid Effect

November 12, 2018
IMG_7906

Droplets collect near the rim of a mug filled with hot water.

During my mug cooling experiment last week, I was surprised to find that taking the lid off a vacuum insulated mug increased its initial cooling rate by a factor 7.5.

Removing the lid allowed air from the room to flow across the surface of the water, cooling it in two ways.

  • Firstly, the air would warm up when it contacted the hot water, and then carry heat away in a convective flow.
  • Secondly, some hot water would evaporate into the moving air and carry away so – called ‘latent heat’.

I wondered which of these two effects was more important?

I decided to work out the answer by calculating how much evaporation would be required to explain ALL the cooling. I could then check my calculation against the measured mass of water that was lost to evaporation.

Where to start?

I started with the cooling curve from the previous blog.

Slide5

Graph#1: Temperature (°C) versus time (minutes) for water cooling in an insulated mug with and without a lid. Without a lid, the water cools more than 7 times faster.

Because I knew the mass of water (g) and its heat capacity (joule per gram per °C), I could calculate the rate of heat loss in watts required to cool the water at the observed rate.

In Graph#2 below I have plotted this versus the difference in temperature between the water and the room temperature, which was around 20 °C.

Slide6

Graph#2: The rate of heat flow (in watts) calculated from the cooling curve versus the temperature difference (°C) from the ambient environment. The raw estimates are very noisy so the dotted lines are ‘best fit lines’ which approximately capture the trend of the data.

I was struck by two things: 

  • Firstly, without the lid, the rate of heat loss was initially 40 watts – which seemed very high.
  • Secondly:
    • When the lid was on, the rate of heat loss was almost a perfect straight line This is broadly what one expects in a wide range of heat flow problems – the rate of heat flow is proportional to the temperature difference. But…
    • When the lid was off, the heat flow varied non-linearly with temperature difference.

To find out the effect of the lid, I subtracted the two curves from each other to get the difference in heat flow versus the temperature of the water above ambient (Graph#3).

[Technical Note: Because the data in Graph#2 is very noisy and irregularly spaced, I used Excel™ to work out a ‘trend line’ that describes the underlying ‘trend’ of the data. I then subtracted the two trend lines from each other.]

Slide7

Graph#3: The dotted line shows the difference in power (watts) between the two curves in the previous graph. This should be a fair estimate for the heat loss across the liquid surface.

This curve now told me the extra rate of cooling caused by removing the lid.

If this was ALL due to evaporative cooling, then I could work out the expected loss of mass by dividing by the latent heat of vaporisation of water (approximately 2260 joules per gram) (Graph#4).

Slide8c

Graph#4. The calculated rate of evaporation (in milligrams per second) that would be required to explain the increased cooling rate caused by removing the lid.

Graph#4 told me the rate at which water would need to evaporate to explain ALL the cooling caused by removing the lid.

Combining that result with the data in Graph#1, I worked out the cumulative amount of water that would need to evaporate to explain ALL the observed extra cooling (Graph#5)

Slide9

Graph#5: The red dashed line shows the cumulative mass loss (g) required to explain all the extra cooling caused by removing the lid. The green dashed lines show the amount of water that actually evaporated in each of the two ‘lid off’ experiments. The green data shows additional measurements of mass loss versus time from a third experiment.

In Lid-Off Experiments#1 and #2, I had weighed the water before and after the cooling experiment and so I knew that in each experiment with the lid off I had lost respectively 25 g and 31 g of water –  just under 10% of the water.

But Graph #5 really needed some data on the rate of mass loss, so I did an additional experiment where I didn’t measure the temperature, but instead just weighed the mug every few minutes. This is the data plotted on Graph#5 as discrete points.

Conclusions#1

In Graph#5, it’s clear that the measured rate of evaporation can’t explain all the increased cooling rate loss, but it can explain ‘about a third of it‘.

So evaporation is responsible for about a third of the extra cooling, with two thirds being driven by heat transfer to the flowing air above the cup.

It is also interesting that even though the cooling curves in Graph#1 are very similar, the amount of evaporation in Graph#5 is quite variable.

The video below is backlit to show the ‘steam’ rising above the mug, and it is clear that the particular patterns of air flow are very variable.

The actual amount of evaporation depends on the rate of air flow across the water surface, and that is driven both by

  1. natural convection – driven by the hot low-density air rising, but also by…
  2. forced convection – draughts flowing above the cup.

I don’t know, but I suspect it is this variability in air flow that caused the variability in the amount of evaporation.

Conclusions#2

I have wasted spent a several hours on these calculations. And I don’t really know why.

Partly, I was just curious about the answer.

Partly, I wanted to share my view that it is simply amazing how much subtle physics is taking place around us all the time.

And partly, I am still trying to catch my breath after deciding to go ‘part-time’ from next year. Writing blog articles such as this is part of just keeping on keeping on until something about the future becomes clearer.

P.S. Expensive Mugs

Finally, on the off-chance that (a) anybody is still reading and (b) they actually care passionately about the temperature of their beverages, and (c) they are prepared to spend £80 on a mug, then the Ember temperature-controlled Ceramic mug may be just thing for you. Enjoy 🙂

 

Mug Cooling: Initial Results

November 7, 2018

One of life’s greatest pleasures is a nice cup of tea or coffee.

  • But what temperature makes the drink ‘nice’?
  • And how long after making the beverage should we wait to drink it?
  • And what type of mug is optimal?

To answer these questions I devised a research proposal involving temperature measurements made inside mugs during the cooling process.

I am pleased to tell you that my proposal was fully-funded in its initial stage by the HBRC*, having scored highly on its societal impact.

Experimental Method

The basic experiment consisted of pouring approximately 300 ml of water (pre-stabilised at 90 °C) into a mug sitting on a weighing scale. The weighing allowed low uncertainty assessment of the amount of water added.

The temperature of the water was measured every 10 seconds using four thermocouples held in place by a wooden splint. The readings were generally very similar and so in the graphs below I have just plotted the average of the four readings.

Experiments were conducted for a fancy vacuum-insulated mug (with and without its lid) and a conventional thick-walled ceramic mug. The results for the vacuum-insulated mug without its lid were so surprising that I repeated them.

This slideshow requires JavaScript.

Results

The average temperature of the water in the mugs is shown in the two graphs below.

The first graph shows all the data – more than 8 hours for the vacuum insulated mug – , and the second graph shows the initial behaviour.

Also shown are horizontal lines at various temperatures that I determined (in a separate series of experiments) to be the optimal drinking range.

Slide1

The average temperature of the water in the mugs versus time.

Slide2

The first 120 minutes of the cooling curves. The water was poured in at 4 minutes.

Discussion

The most striking feature of the cooling curves is the massive difference between the results for the vacuum insulated mug with, and without, its lid.

As I mentioned at the start, the result was so striking that I repeated the measurements (marked as #1 and #2) on the graphs.

The table below shows how many minutes it took for the water to cool to the three states highlighted on the graphs above:

  • Too hot to drink, but just sippable
  • Mmmm. A nice hot cuppa.
  • I’ll finish this quickly otherwise it’ll be too cold.

Minutes to reach status

  Vacuum-Insulated Mug

Ceramic Mug

 No Lid

 With Lid

Just Sippable

2

10

66

Upper Drinkable Limit 12 24

151

Lower Drinkable Limit

28

53

296

Conclusion

The insulating prowess of the vacuum insulated mug (with lid) is outstanding.

But the purpose of a mug is not simply to prevent cooling. It is to enable drinking! 

So to me this data raises a profound question about the raison d’être for vacuum insulated mugs.

  • Who  makes a cup of coffee and then thinks “Mmm, that’ll be just right to drink in two and a half hours time!”

Admittedly,  the coffee will then stay in the drinkable range for an impressive two hours. But still.

In contrast, the ceramic mug cools the hot liquid initially and allows it to reach the optimal drinking temperature after just a few minutes.

Further work

The review committee rated this research very highly and suggested two further research proposals.

  • The first concerned the explanation for the very large effect of removing the lid from the vacuum insulated mug. That research has already been carried out and will be the result of a further report in this journal.
  • The second concerned the effect of milk addition which could significantly affect the time to reach the optimal drinking temperature. That research proposal is currently being considered by HBRC.

==============================

*HBRC = Hot Beverage Research Council

Where have I been all this time?

October 26, 2018

It’s been almost two months since I last wrote an article for this blog. In the 10 years since I began writing here, that is the longest gap ever.

What’s up?

Broadly speaking, I have been very busy and very unhappy at work.

My unhappiness at work is nothing new. Regular readers may remember my article on ‘Coping by Counting‘ back in February 2017 where I extolled the virtue of counting down the time to retirement month-by-month.

Colleagues will know that I have been able to immediately tell them how many months, weeks  and days (and occasionally hours!) until my planned retirement date.

This technique really helped me through the last 20 months, but recently it became apparent that I would not last another 86 months and two weeks.

The only possibility seemed to be to resign, and a couple of weeks ago that is what I decided to do. But after talking with friends, family and colleagues, I was ‘talked down’ from this precipitous step and urged to look for alternatives.

So I have been negotiating to work part-time, and happily this seems to be achievable. This is due in no small part to my exceptionally kind line manager. So from January 2019 I will begin working three days a week. Hopefully this will be sustainable.

Perspective & Reflections

At the moment, this step feels like a humiliating defeat. Being unable to cope in a 21st Century working environment feels like a very personal failure. But I hope these feelings will fade.

Firstly, when I have told colleagues of my decision, they have reacted with a mixture of empathy and envy. They too are feeling the strain. So I have sense that it is not ‘just me’.

Secondly, looking at my career more broadly, in my 18 years at NPL I have managed to achieve a thing or two.

  • I was part of the team that made the second most accurate measurement of the Boltzmann constant ever.
  • I was part of the team that made the most accurate temperature measurements ever.
  • I have affected the lives of many people with my outreach work.
  • In 2009 I met the Queen and she gave me a medal!

And importantly I have managed to earn money, stay married, and bring up two children.

So from this wider perspective, reducing the amount of work I do and focusing more on writing and general pottering seems reasonable and not really a sign of defeat and failure.

So…

Over the next few months I will hand over (or drop) the responsibilities that  fitted into the previously normal 6/7 working days, and find a package of work projects that I can achieve in 3.00 working days.

  • Did you notice the decimal point?

This will require a change in perspective on my part. I will need to let  go of some projects which I have been holding onto in the hope that I would be able to find some time to move them forwards. This won’t be easy.

But on the other hand, the prospect of several days a week on which I have no agenda items whatsoever already feels exhilarating.

 

 

 

Hydraulic jumps in the kitchen

September 1, 2018

It has been a difficult summer for me.

Putting on the Royal Society Summer Science Exhibition was utterly exhausting, and even two months on, I have not been able to catch up on all the extra days and hours I worked. And I fell behind on every other project on which I am working.

So every day as I enter work I have to catch my breath, staunch my sense of panic, and force myself to stay calm as I begin another day of struggling through tiredness to avoid failure on all the projects on which I am way behind.

But earlier this week my colleague caught me staring at the water flowing down the sink in the kitchenette where we prepare tea.

img_7694

I was staring at a phenomenon I have been fascinated by since childhood – the way water falling from the tap onto the bottom of the kitchen sink forms a smooth flat circle for a few centimetres around where the water lands – and then forms a ‘wavy wall’ around this circle.

My colleague said to me: “It’s great isn’t it. It’s called a hydraulic jump“. Learning that this phenomenon had a name lifted my spirits enormously and made me more curious about what was going on.

So today (Saturday) I have wantonly avoided catching up with my weekly tide of failure, stupidly neglected to pack for my week long conference in Belfast starting tomorrow, and spent the afternoon playing at the kitchen sink. I have experienced transitory happiness.

Hydraulic jump

Naming a phenomenon is stage#1 of the process of understanding it. Knowing this name allowed me to read a number of  – frankly confusing – articles on the web.

But after reading and playing for a while I think I am now beginning to understand what makes the circle form. There are two parts to my understanding:

The first insight arises from comparing:

  • the flow speed of the water with,
  • the speed at which waves travel on the surface of the water.

Inside the circle, the flow is faster than the speed at which waves can travel in the water.  So surface disturbances are swept outwards – the waves are not fast enough to travel ‘upstream’, back towards the centre.

As one moves further away from the centre, the flow speed falls and at the edge of the circle, the flow speed is just equal to the speed of water waves. So water waves travelling back towards the centre of the circle appear stationary – this what makes the circle appear to be ‘fixed’ even though it is a dynamically created structure.

Outside the circle, the flow slows sufficiently that water waves can travel upstream (towards the middle) but they can never travel into ‘the circle’. (There is actually a scientific paper in which this circle is used as an analogy to the ‘Event Horizon’ in a putative ‘White hole’!)

Hydraulic Jump Illustration

The second insight, arises from considering turbulence.

Once waves can travel in both directions in the water, turbulence builds up which slows the speed of the flowing water dramatically.

So in the steady state, the depth of the water builds up suddenly and the ratio of the depth of water inside the circle to the depth outside the circle is simply the ratio of the speeds of water flow just outside and just inside the circle.

So if the speed of flow is 10 times slower outside the circle, then the water will be be 10 times deeper outside the circle.

In the picture above and the video below, you can see the very strikingly different nature of the liquid surfaces. Shallow and perfectly smooth within the circle, and deeper and turbulent outside the circle.

Experiments

I began playing by finding a better surface than the bottom of a sink. I used an upside down baking tray and adjusted it to be as level as I could manage.

img_7695

Not knowing what to do, I began by measuring the diameter of the circle formed for different flow rates:

  • I measured the diameter roughly with a ruler
  • I measured the flow rate by timing how long it took to fill a measuring jug which I weighed before and after filling.

This produced a pleasing graph, but no real insight. An increased flow rate meant made the circle larger because it took more time (and distance) for the flowing water to slow down to the speed of water waves.

Graph

Looking at the algebra, I realised I really needed to know the speed of the water and depth of the water. But how could I measure these things?

I tried estimating the speed of the water by injecting food colouring into the flow and making a movie using the slow-motion mode of my iPhone camera.

Knowing the circle was about 8.8 cm in diameter, this allowed me to estimate the speed of flow as roughly 1.5 ± 0.5 metres per second in the centre zone. However I couldn’t think how to estimate the thickness (height) of the flowing layer.

By sticking a needle in I could see that it was much less than 1 mm and appeared to be less than a tenth of the thickness of the water outside the circle. But I couldn’t make any meaningful measurements.

Then I realised that I could I estimate the speed of the water in a different way. If I placed a needle in the moving water, it produced an angular ‘shock wave’.

This is similar to way an aeroplane travelling faster than the speed of sound in air produces a ‘sonic boom’.

  • For an aeroplane, the angle of the shock wave with respect to the direction of motion is related to the ratio of the speed of the plane to the speed of the sound.
  • For our flowing water, the angle of the shock wave with respect to the direction of motion is related to the ratio of the speed of the water to the speed of the water waves.

Unfortunately the angle changes very rapidly as the ratio of flow speed to wave speed approaches unity and I found this phenomenon difficult to capture photographically.

Graph 2

But as the photographs below show, I could convince myself qualitatively that the angle was opening out as I placed the obstacle nearer the edge of the circle.

Hydraulic Jump Pictures

Observations of the shock wave formed when an obstruction is placed in the water flow. The top row of photographs shows the effect of moving the obstruction from near the centre to near the edge of the circle. The bottom row of photographs are the same as the top row but I have added dotted lines to show how the shock angle opens up nearer the edge of the circle.

Summary

  • My work remains undone.
  • I still have to pack in order to leave for the conference at 8:30 a.m. on Sunday morning: less than 8 hours away as I finish this. (Perhaps I will have a chance to complete some tasks at the airport or on Sunday evening?)
  • I have understood a little something about one more little thing in this beautiful world, and that has lifted my spirits. For now at least.

img_7689

 

 

 

 

 

 

Talking about the SI

June 24, 2018

In just a few days, we will be setting up our stand about the International System of Units, the SI, at the Royal Society Summer Science Exhibition (RSSSE).

In May 2019 the world plans to redefine four of the base units of the SI. The re-definition represents a profound change in our concept of measurement.

And it involves quantities with which most people are familiar, such as ‘a kilogram’, or ‘a degree Celsius’.

So we have thought long and hard about how to communicate this at RSSSE.

Where to start?

The geographical theory of knowledge  suggests that ‘explanations of concepts’ are like ‘directions from one place to another’.

And thus, when people visit our stand, we are obliged to start giving ‘directions’ from where they actually ‘are’.

Although we want to talk about the re-definition of the SI, we have to acknowledge that most people don’t actually know much about the SI.

So if we want to ‘start from where people are’, we first need to explain what the SI is now, and why it matters. And that is what we have done.

It’s about Measurement.

In the ‘orientation’ for colleagues who will be helping at the RSSSE, we have stressed three starting points to help orient visitors to the stand.

  • At the heart of science and engineering, there is measurement.
  • Measurement is the comparison of an unknown thing against a standard.
  • In the International System of Units there are seven standard things against which all physical quantities are compared.

We then have seven hands-on demonstrations – one for each of the seven standard quantities (called ‘base units’)- which will hopefully serve as starting points for conversations.

Keep it simple!

In developing the ‘hands-on demonstrations we worked with the magical people at Science Projects to build apparatus that was robust and simple.

They have years of experience developing hands-on kit for museums and interactive science centres.

As we honed our initial ideas, Science Projects staff constantly challenged us to ‘keep it simple’. And in (almost) every case, their instincts were sound.

A demonstration which is engaging and which can be immediately grasped is a dramatically better starting point for a conversation than one which is beautifully sophisticated, but only elicits the Ah-yes,-I-see-now-moment after 5 minutes.

NPL Stands for the RSSSE exhibition

Stands for the RSSSE exhibition

NPL tweaks!

We developed the demonstrations and tried them out on NPL’s Open Day in May. The stands all survived and people seemed happy with the demonstrations.

But because we are NPL, and because at RSSSE we also need to interact with Fellows of the Royal Society, we had to add some truly complex and amazing features that are right at the forefront of science.

  • The ‘time team’ decided to develop an app that would allow people to compare the time on their own phones with the time from NPL’s Caesium atomic clock.
  • The ‘length team’ decided they wanted to develop a laser interferometer that would measure the height of SI-bots in terms of the wavelength of light.
  • The ‘mass team’ wanted to put an actual working Kibble balance on the stand at the Royal Society.

As I write this on Sunday 24th June, – none of these demonstrations are ready! But my colleagues are working hard and I am cautiously confident they will succeed.

If you get a chance to visit, the RSSSE is FREE and runs from Monday 2nd July 2018 until Sunday 9th July 2018.

 

 

 

Work-life balance

June 23, 2018
It is possible to do lots of things at the same time. (Picture Credit: Dr Seuss)

Figure 1: It is possible to do lots of things at the same time. (Picture Credit: Dr Seuss)

One of my favourite management consultants is Dr. Seuss.

In his guide to optimising productivity, amusingly titled, “The Cat in the Hat“, (TCITH) the good doctor shows us that it is indeed possible to ‘do it all’.

I find it interesting that this book – which uses short words and a restricted vocabulary because it was written for busy managers – is now widely used with children.

I see this as a really positive development. It is after all essential that our children learn what is possible with practice. But this has not reduced the impact of TCITH in modern management.

So while “standing on a ball in the hall”, a metaphor for day-to-day work, children learn that they can also do many other things at the same time without there being any negative consequences.

In Dr Seuss’s guide, the eponymous hero also balances a cake and a rake, a fish and a dish, a fan and a man! These wittily-chosen tasks are of course merely placeholders for specific tasks that we can all learn to do simultaneously.

For example in my life, they might represent:

  • Preparing for the Royal Society Summer Science Exhibition
  • Refereeing scientific papers.
  • Mending broken equipment.
  • Mending the gutter
  • Carrying out urgent experiments for customers
  • Giving training courses
  • Managing complex manufacturing projects with tight deadlines.
  • Collecting the children’s stuff from university.
  • Planning collaborative projects with European partners.

All in addition to “standing on a ball in the hall” i.e. carrying out my normal job.

I have to admit that I occasionally find this stressful. But when I do I turn to Dr. Seuss for re-assurance.

Looking at the charmingly-drawn illustrations (see Figure 1), I see ‘a cat’ who is ‘doing it all’ and enjoying it at the same time.

The seminal impact of TCITH can be assessed by considering our relatively recent concerns with ‘work-life balance’, a concept clearly foreseen and graphically illustrated in TCITH.

Looking at ‘cat’ in the illustrations, it is clear that if life is busy or challenging at home, one merely needs to add an equivalent challenge at work in order to maintain the work-life balance.

  • Dr. Seuss: Thank you.
  • Cat in the Hat: you are my hero.

 

The James Webb Space Telescope

May 10, 2018

Last week I was on holiday in Southern California. Lucky me.

Lucky me indeed. During my visit I had – by extreme good fortune – the opportunity to meet with Jon Arenberg – former engineering director of the James Webb Space Telescope (JWST).

And by even more extreme good fortune I had the opportunity to speak with him while overlooking the JWST itself – held upright in a clean room at the Northrop Grumman campus in Redondo Beach, California.

[Sadly, photography was not allowed, so I will have to paint you a picture in words and use some stock images.]

The JWST

In case you don’t know, the JWST will be the successor to the Hubble Space Telescope (HST), and has been designed to exceed the operational performance of the HST in two key areas.

  • Firstly, it is designed to gather more light than the HST. This will allow the JWST to see very faint objects.
  • Secondly, it is designed to work better with infrared light than the HST. This will allow the JWST to see objects whose light has been extremely red-shifted from the visible.

A full-size model of the JWST is shown below and it is clear that the design is extraordinary, and at first sight, rather odd-looking. But the structure – and much else besides – is driven by these two requirements.

JWST and people

Requirement#1: Gather more light.

To gather more light, the main light-gathering mirror in the JWST is 6.5 metres across rather than just 2.5 metres in the HST. That means it gathers around 7 times more light than the HST and so can see fainter objects and produce sharper images.

1280px-JWST-HST-primary-mirrors.svg

Image courtesy of Wikipedia

But in order to launch a mirror this size from Earth on a rocket, it is necessary to use a  mirror which can be folded for launch. This is why the mirror is made in hexagonal segments.

To cope with the alignment requirements of a folding mirror, the mirror segments have actuators to enable fine-tuning of the shape of the mirror.

To reduce the weight of such a large mirror it had to be made of beryllium – a highly toxic metal which is difficult to machine. It is however 30% less dense than aluminium and also has a much lower coefficient of thermal expansion.

The ‘deployment’ or ‘unfolding’ sequence of the JWST is shown below.

Requirement#2: Improved imaging of infrared light.

The wavelength of visible light varies from roughly 0.000 4 mm for light which elicits the sensation we call violet, to 0.000 7 mm for light which elicits the sensation we call red.

Light with a wavelength longer than 0.000 7 mm does not elicit any visible sensation in humans and is called ‘infrared’ light.

Imaging so-called ‘near’ infrared light (with wavelengths from 0.000 7 mm to 0.005 mm) is relatively easy.

Hubble can ‘see’ at wavelengths as long as 0.002 5 mm. To achieve this, the detector in HST was cooled. But to work at longer wavelengths the entire telescope needs to be cold.

This is because every object emits infrared light and the amount of infrared light it emits is related to its temperature. So a warm telescope ‘glows’ and offers no chance to image dim infrared light from the edge of the universe!

The JWST is designed to ‘see’ at wavelengths as long as 0.029 mm – 10 times longer wavelengths than the HST – and that means that typically the telescope needs to be on the order of 10 times colder.

To cool the entire telescope requires a breathtaking – but logical – design. There were two parts to the solution.

  • The first part involved the design of the satellite itself.
  • The second part involved the positioning the satellite.

Cooling the telescope part#1: design

The telescope and detectors were separated from the rest of the satellite that contains elements such as the thrusters, cryo-coolers, data transmission equipment and solar cells. These parts need to be warm to operate correctly.

The telescope is separated from the ‘operational’ part of the satellite with a sun-shield roughly the size of tennis court. When shielded from the Sun, the telescope is exposed to the chilly universe, and cooled gas from the cryo-coolers cools some of the detectors to just a few degrees above absolute zero.

Cooling the telescope part#2: location

The HST is only 300 miles or so from Earth, and orbits every 97 minutes. It travels in-to and out-of full sunshine on each orbit. This type of orbit is not compatible with keeping a gigantic telescope cold.

So the second part of the cooling strategy is to position the JWST approximately 1 million miles from Earth at a location known as the second Lagrange point L2.

At L2 the gravitational attraction of the Sun is approximately 30 times greater than the gravitational attraction of the Earth and Moon.

At L2 the satellite orbits the Sun in a period of one year – and so stays in the same position relative to the Earth.

  • The advantage of orbiting at L2 is that the satellite can maintain the same orientation with respect to the Sun for long periods. And so the sun-shade can shield the telescope very effectively, allowing it to stay cool.
  • The disadvantage of orbiting at L2 is that it is beyond the orbit of the moon and no manned space-craft has ever travelled so far from Earth. So once launched, there is absolutely no possibility of a rescue mission.

The most expensive object on Earth?

I love the concept of the JWST. At an estimated cost of $8 billion, if this is not the most expensive single object on Earth, then I would be interested to know what is.

But it has not been created to make money or as an act of aggression.

Instead, it has been created to answer the simple question

I wonder what we would see if we looked into deep space at infrared wavelengths.”. 

Ultimately, we just don’t know until we look.

In a year or two, engineers will place the JWST on top of an Ariane rocket and fire it into space. And the most expensive object on Earth will then – hopefully – become the most expensive object in space.

Personally I find the mere existence of such an enterprise a bastion of hope in a world full of worry.

Thanks

Many thanks to Jon Arenberg  and Stephanie Sandor-Leahy for the opportunity to see this apogee of science and engineering.

Resources

Breathtaking photographs are available in galleries linked to from this page

 

Error Bar

April 15, 2018

Error Bar

This picture arrived in my in box through the medium of Twitter.

The Bar

It shows the Error Bar, with 20 ± 2 beers on tap, and a neon sign in which two glasses conspire to make an uncertainty indication.

It must surely be run by a burned-out metrologist who couldn’t take the heat of cutting-edge metrology.

The modern day equivalent of Graham Greene’s ‘whisky priest’, they retired to a town with barely a single calibration laboratory.

Here, they run the Error Bar and (unheeded) give advice on uncertainty estimation to random passers by while dispensing precise doses of tequila, with amounts of ethanol traceable to the SI base unit mole .

The awning of the bar sports the logo of the BIPM – the International Bureau of Weights and Measures – where they were seconded for a summer.

Error Bar detail 2

However it was here that their true love slipped away while they worked on an impossible uncertainty budget. And they never recovered.

In memory of their lost love,  they commissioned the local blacksmith to create a railing on the disabled access ramp which reflects the uncertainty that life always entails.

Error Bar detail 1

The Restaurant

And after a drinking a glass or two of tequila, one can retire to the restaurant next door – Measurands (literally meaning “the things which are measured”).

Error Bar detail 3

Is this place real?

I doubt it. 

But the picture has been created with great care by a metrologist and (if they can ever confess to creating this picture)  I would love to shake their hand…

…and perhaps buy them a drink in this little out-of-the-way bar I have heard of…

 

Air Temperature

April 1, 2018

Recently, two disparate strands of my work produced publications within a week of each other.

Curiously they both concerned one of the commonest measurements made on Earth today – the measurement of air temperature.

  • One of the papers was the result of a humbling discovery I made last year concerning a common source of error in air temperature measurements. (Link to open access paper)
  • On the other  paper I was just one amongst 17 authors calling for the establishment of global reference network to monitor the climate. My guess is that most people imagine such a network already exists – but it doesn’t! (Link to open access paper)

I am writing this article because I was struck by the contrasting styles of these papers: one describing an arcane experimental detail; and the other proposing a global inter-governmental initiative.

And yet the aim of both papers was identical: to improve measurement so that we can more clearly see what is happening in the world.

Paper 1

In the middle of 2018 I was experimenting with a new device for measuring air temperature by measuring the speed of sound in air.

It’s an ingenious device, but it obviously needed to be checked. We had previously carried out tests inside environmental chambers, but the temperature stability and uniformity inside the chambers was not as good as we had hoped for.

So we decided to test the device in one of NPL’s dimensional laboratories. In these laboratories, there is a gentle, uniform flow of air from ceiling to floor, and the temperature is stable to within a hundredth of a degree Celsius (0.01 °C) indefinitely.

However, when I tried to measure the temperature of the air using conventional temperature sensors I got widely differing answers – varying by a quarter of a degree depending on where I placed the thermometer. I felt utterly depressed and humiliated.

Eventually I realised what the problem was. This involved stopping. Thinking carefully. And talking with colleagues. It was a classic case of eliminating the impossible leaving only the improbable.

After believing I understood the effect, I devised a simple experiment to test my understanding – a photograph of the apparatus is shown below.

tubes-in-a-lab-photo.png

The apparatus consisted of a set of stainless steel tubes held in a clamp stand. It was almost certainly the cheapest experiment I have ever conducted.

I placed the tubes in the laboratory, exposed to the downward air flow, and  left them for several hours to equilibrate with air.

Prior to this experience, I would have bet serious amounts of money on the ‘fact’ that all these tubes would be at the same temperature. My insight had led me to question this assumption.

And my insight was correct. Every one of the tubes was at a different temperature and none of them were at the temperature of the air! The temperature of the tubes depended on:

  • the brightness of the lights in the room – which was understandable but a larger effect than I expected, and
  • the diameter of the tubes – which was the truly surprising result.

Results 1

I was shocked. But although the reason for this is not obvious, it is also not complicated to understand.

When air flows air around a cylindrical (or spherical) sensor only a very small amount of air actually makes contact with the sensor.

Air reaching the sensor first is stopped (it ‘stagnates’ to use the jargon). At this point heat exchange is very effective. But this same air is then forced to flow around the sensor in a ‘boundary layer’ which effectively insulates the sensor from the rest of the air.

Air flow

For small sensors, the sensor acquires a temperature close to that of the air. But the air is surprisingly ineffective at changing the temperature of larger sensors.

The effect matters in two quite distinct realms.

Metrology

In metrology – the science of measurement – it transpires that knowledge of the temperature of the air is important for the most accurate length measurements.

This is because we measure the dimensions of objects in terms of the wavelength of light, and this wavelength is slightly affected by the temperature of the air through which the light passes.

In a dimensional laboratory such as the one illustrated below, the thermometer will indicate a temperature which is:

  • different from the temperature of artefacts placed in the room, and
  • different from the temperature of the air.

Laboratory

Unless the effect is accounted for – which it generally isn’t – then length measurements will be slightly incorrect.

Climatology

The effect is also important in climatology. If a sensor is changed in a meteorological station people check that the sensor is calibrated, but they rarely record its diameter.

If a calibrated sensor is replaced by another calibrated sensor with a different diameter, then there will be a systematic effect on the temperatures recorded by the station. Such effects won’t matter for weather forecasting, but they will matter for people using the stations for a climate record.

And that brings me to Paper 2

Paper 2

Hadcrut4 Global Temperature

When we see graphs of ‘global temperatures’ over time, many people assume that the data is derived from satellites or some ‘high-tech’ network of sensors. Not so.

The ‘surface’ temperature of the Earth is generally estimated in two quite distinct parts – sea surface temperature and land surface temperature. But both these terms are slight misnomers.

Considering just the land measurements, the actual temperature measured is the air temperature above the land surface. In the jargon, the measurement is called LSAT – the Land Surface Air Temperature.

LSAT is the temperature which human beings experience and satellites can’t measure it.

LSAT data is extracted from temperature measurements made in thousands of meteorological stations around the world. We have data records from some stations extending back for 150 years.

However, it is well known that data is less than ideal: it is biased and unrepresentative in many ways.

The effect described in Paper 1 is just one of many such biases which have been extensively studied. And scientists have devised many ways to check that the overall trend they have extracted – what we now call global warming – is real.

Nonetheless. It is slightly shocking that a global network of stations designed specifically with the aim of climate monitoring does not exist.

And that is what we were calling for in Paper 2. Such a climate network would consist of less than 200 stations world-wide and cost less than a modest satellite launch. But it would add confidence to the measurements extracted from meteorological stations.

Perhaps the most important reason for creating such a network is that we don’t know how meteorological technology will evolve over the coming century.

Over the last century, the technology has remained reasonably stable. But it is quite possible that the nature of data acquisition for meteorological applications will change  in ways we cannot anticipate.

It seems prudent to me that we establish a global climate reference network as soon as possible.

References

Paper 1

Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology
Michael de Podesta, Stephanie Bell and Robin Underwood

Published 28 February 2018
Metrologia, Volume 55, Number 2 https://doi.org/10.1088/1681-7575/aaaa52

Paper 2

Towards a global land surface climate fiducial reference measurements network
P. W. Thorne, H. J. Diamond, B. Goodison , S. Harrigan , Z. Hausfather , N. B. Ingleby , P. D. Jones ,J. H. Lawrimore , D. H. Lister , A. Merlone , T. Oakley , M. Palecki , T. C. Peterson , M. de Podesta , C. Tassone ,  V. Venema, K. M. Willett

Published: 1 March 2018
Int. J. Climatol 2018;1–15. https://doi.org/10.1002/joc.5458

Obesity Policy

March 6, 2018

BBC Story Extract

Today the BBC are reporting that:

Britain needs to go on a diet, says top health official

The article states that people should allow:

  • 400 kilo-calories for breakfast
  • 600 kilo-calories for lunch
  • 600 kilo-calories for dinner

which adds up to 1600 kilo-calories a day. With this dietary intake, most adults in sedentary occupations will lose weight or maintain a healthy weight.

However, the article then goes on to say:

It is recommended that women should eat no more than 2,000 kilo-calories a day, while men should limit their intake to 2,500 kilo-calories.

No! As I pointed out previously, this is just too many calories for both men and women with sedentary lifestyles.

Any government campaign based on these figures is bound to fail.

Calories versus Age

For someone of my height and weight, the government’s recommended dietary intake is about 30% too high.


%d bloggers like this: