Archive for the ‘Out There – Cosmology and all that’ Category

The James Webb Telescope: it’s all done with mirrors

January 26, 2022

Click image for a larger  version. The James Webb Telescope has reached the L2 point!

Friends, Hurray! The James Webb Space Telescope (JWST) has deployed all its moveable parts and reached its lonely station at the L2 point, far beyond the Moon.

In a previous article I mentioned that back in 2018 I had been fortunate enough to meet with Jon Arenberg from Northrop Grumman, and to see the satellite in its clean room at their facility in Redondo Beach, California.

  • In that article I outlined in broad terms why the satellite is the shape it is.
  • In this article I want to mention two other people who have made key contributions to the JWST.

I was fortunate enough to meet these people during my ‘career’ at NPL. And as I hope to explain, they have taken manufacturing and metrology to the very limits of what is possible in order to make a unique component for the JWST.

It’s all done with Mirrors

The 18 hexagonal mirrors of the JWST are iconic, but in fact there are many more mirrors inside the telescope.

JWST uses mirrors rather than lenses to guide the light it has captured, because at the infrared wavelengths for which the JWST is designed, glass and almost all other materials strongly absorb i.e. they are opaque!

In contrast, during reflection from a metal surface, light only enters the material of the mirror in a very thin layer at its surface.

Consequently, mirror surfaces can guide light of any wavelength with very low absorption.

Form and Smoothness

The creation of a mirror surface requires a machining operation in which a metal component – most commonly made from aluminium – is cut into a specific form with an exceptionally smooth surface.

  • The surface form must be close to the shape it was designed to be.
    • Otherwise the light will not be directed to a focus and the images will be blurred.
  • The surface roughness – the ‘ups and downs’ of the surface – must be much less than the wavelength of the light the mirror must reflect.
    • Otherwise the light will be ‘scattered’ from the surface and very dim objects will be obscured by light scattered from nearby bright objects

The large mirror surfaces on the primary and secondary mirrors are manufactured in a complex process that involves machining the surface of the highly-toxic beryllium metal, and then painstakingly grinding and polishing the surface into shape. Once completed, the finished surface is coated in gold.

Each step in the manufacturing process is interspersed with a measurement procedure to assess the roughness of the surface and the closeness to its ideal form. Ultimately the limit to achievable manufacturing perfection is simply the limit of our ability to make measurements of its surface.

For small mirrors, this polishing process is typically not possible and the surface must be cut directly on a sophisticated lathe.

To achieve the mirror-smooth surfaces, the lathe uses an ultra-sharp diamond-tool which can remove just a few thousandths of a millimetre of material at a time and leave a surface with near-atomic smoothness.

But typically the required surface form is not part of a sphere or a cylinder. To cut such ‘aspheric’ surface forms on a lathe requires that the lathe tool move on a complicated trajectory during a single rotation of the workpiece: the solid geometry and mathematics to achieve this are hellish.

To achieve the required form, the trajectory that the tool must follow relative to the workpiece is calculated millisecond-by-millisecond in MATLAB, and then instructions are downloaded to the lathe.

The JWST is filled with mirrored surfaces of bewildering complexity, channelling infrared light via mirrors to measuring instruments. And slightly to my surprise – and perhaps to yours – I have been told that considering all the mirror surfaces inside JWST, more were made in the UK than in any other country.

Splitter

One of the key instruments onboard the JWST is the Mid-Infrared  Instrument (MIRI) which analyses light with wavelengths from 5 thousandth of a millimetre out to 28 thousandths of a millimetre.

And inside MIRI, one of the most complex mirrored-components is a ‘slicer’ or ‘splitter’ component.

Its precise function is hard to describe: the figure below is from an almost incomprehensible paper. My opinion is that it is incomprehensible if you don’t already know how it works!

Click on image for a larger version. Figure 14 of “The European optical contribution to the James Webb Space Telescope”. See the end of the article for reference. On the right is ‘splitter’ which redirects light in an almost inconceivably complex pattern.

So let me have a go.

  • Imagine parallel light from the main telescope mirrors falling on to a square section of a parabola. It is a property of a parabola that this light will be directed towards a single point: the focus of the parabola.
  • Now imagine splitting the square into two, and preparing each half of the square as sections of two different parabolas with their foci in two different places. Now parallel light falling on the component will be directed towards two different locations – with 50% of the light proceeding to each focus.

Click on image for a larger version. Illustration of the function of the splitter component. The left-hand panel shows parallel light falling onto a fraction of a parabolic surface being directed towards a focus. The right-hand panel shows parallel light falling onto a fractions of two different parabolic surfaces, and being directed towards two different foci. The Cranfield splitter has slices of 21 different parabola – each within 10 nanometres of its ideal form!

Now imagine repeating this division and machining a component with sections of 21 different parabolas in thin slices each just a couple of millimetres across. This what Paul Morantz and colleagues manufactured at Cranfield University in 2012. There’s a photograph of the component below.

Click on image for a larger version. An early prototype of the splitter mirror the JWST in the display cabinet at Cranfield University. It is – by definition, almost impossible to a photograph a mirror surface. But notice that each of the 21 mirror surfaces reflects light from a different portion of the label in front of it.

Each of the 21 different surfaces had to conform to its specified form within ±10 nanometres (IIRC). And to verify this required measuring that surface with that uncertainty. Measuring a complex surface with this uncertainty is at the limit of what is possible: re-machining the surfaces to correct for detected form errors is just breathtaking!

At each of the 21 different different focus points is a separate instrument measuring at slightly different wavelengths.

The outcome of all this ingenuity is a single custom component weighing just a few grams that simplifies the optics of the instrument, allowing more weight and space to be devoted to measuring instruments.

Pride and Wonder

Back in 2013 I was honoured to work with Paul Morantz and his colleague Paul Shore on the creation of the Boltzmann hemispheres which were used to make the most accurate temperature measurements in history.

The two hemispheres they created were assembled to make a cavity with a precisely non-spherical shape with a form uncertainty below 0.001 mm at all points over the surface.

But before the Pauls could get to work on our project, they had to finish the splitter for JWST otherwise its anticipated launch date might be delayed. [As it happened, they probably could have taken a little more time ;-)]

After completing the splitter I remember the disappointed look on Paul Morantz’s face when I explained that the Boltzmann project ‘only’ needed form uncertainty of 0.001 mm.

I cannot imagine their pride at having constructed such a wondrous object that is being sent to this remote point in space to make measurements on the most distant, most ancient light in the Universe.

I feel proud just to have known them as colleagues.

The James Webb Space Telescope

December 24, 2021

Friends, a gift to humanity!

On Christmas Day at 12:20 GMT/UTC, the James Webb Space Telescope will finally be launched.

You can follow the countdown here and watch the launch live via NASA or on YouTube – below.

In May 2018 I was fortunate enough to visit the telescope at the Northrop Grumman facility where it was built, and to speak with the project’s former engineering director Jon Arenberg.

Everything about this telescope is extraordinary, and so as the launch approaches I thought that it might be an idea to re-post the article I wrote back in those pre-pandemical days.

As a bonus, if you read to the end you can find out what I was doing in California back in 2018!

Happy Christmas and all that.

===================================

Last week I was on holiday in Southern California. Lucky me.

Lucky me indeed. During my visit I had – by extreme good fortune – the opportunity to meet with Jon Arenberg – former engineering director of the James Webb Space Telescope (JWST).

And by even more extreme good fortune I had the opportunity to speak with him while overlooking the JWST itself – held upright in a clean room at the Northrop Grumman campus in Redondo Beach, California.

[Sadly, photography was not allowed, so I will have to paint you a picture in words and use some stock images.]

The JWST

In case you don’t know, the JWST will be the successor to the Hubble Space Telescope (HST), and has been designed to exceed the operational performance of the HST in two key areas.

  • Firstly, it is designed to gather more light than the HST. This will allow the JWST to see very faint objects.
  • Secondly, it is designed to work better with infrared light than the HST. This will allow the JWST to see objects whose light has been extremely red-shifted from the visible.

A full-size model of the JWST is shown below and it is clear that the design is extraordinary, and at first sight, rather odd-looking. But the structure – and much else besides – is driven by these two requirements.

JWST and people

Requirement#1: Gather more light.

To gather more light, the main light-gathering mirror in the JWST is 6.5 metres across rather than just 2.5 metres in the HST. That means it gathers around 7 times more light than the HST and so can see fainter objects and produce sharper images.

1280px-JWST-HST-primary-mirrors.svg

Image courtesy of Wikipedia

But in order to launch a mirror this size from Earth on a rocket, it is necessary to use a  mirror which can be folded for launch. This is why the mirror is made in hexagonal segments.

To cope with the alignment requirements of a folding mirror, the mirror segments have actuators to enable fine-tuning of the shape of the mirror.

To reduce the weight of such a large mirror it had to be made of beryllium – a highly toxic metal which is difficult to machine. It is however 30% less dense than aluminium and also has a much lower coefficient of thermal expansion.

The ‘deployment’ or ‘unfolding’ sequence of the JWST is shown below.

Requirement#2: Improved imaging of infrared light.

The wavelength of visible light varies from roughly 0.000 4 mm for light which elicits the sensation we call violet, to 0.000 7 mm for light which elicits the sensation we call red.

Light with a wavelength longer than 0.000 7 mm does not elicit any visible sensation in humans and is called ‘infrared’ light.

Imaging so-called ‘near’ infrared light (with wavelengths from 0.000 7 mm to 0.005 mm) is relatively easy.

Hubble can ‘see’ at wavelengths as long as 0.002 5 mm. To achieve this, the detector in HST was cooled. But to work at longer wavelengths the entire telescope needs to be cold.

This is because every object emits infrared light and the amount of infrared light it emits is related to its temperature. So a warm telescope ‘glows’ and offers no chance to image dim infrared light from the edge of the universe!

The JWST is designed to ‘see’ at wavelengths as long as 0.029 mm – 10 times longer wavelengths than the HST – and that means that typically the telescope needs to be on the order of 10 times colder.

To cool the entire telescope requires a breathtaking – but logical – design. There were two parts to the solution.

  • The first part involved the design of the satellite itself.
  • The second part involved the positioning the satellite.

Cooling the telescope part#1: design

The telescope and detectors were separated from the rest of the satellite that contains elements such as the thrusters, cryo-coolers, data transmission equipment and solar cells. These parts need to be warm to operate correctly.

The telescope is separated from the ‘operational’ part of the satellite with a sun-shield roughly the size of a tennis court. When shielded from the Sun, the telescope is exposed to the chilly universe, and cooled gas from the cryo-coolers cools some of the detectors to just a few degrees above absolute zero.

Cooling the telescope part#2: location

The HST is only 300 miles or so from Earth, and orbits every 97 minutes. It travels in-to and out-of full sunshine on each orbit. This type of orbit is not compatible with keeping a gigantic telescope cold.

So the second part of the cooling strategy is to position the JWST approximately 1 million miles from Earth at a location beyond the orbit of the moon at a location known as the second Lagrange point L2. But JWST does not orbit the Earth like Hubble: it orbits the Sun.

Normally the period of orbits around the Sun get longer as satellites orbit at greater distances from the Sun. But at the L2 position, the gravitational attraction of the Earth and Moon add to the gravitational attraction of the Sun and speed up the orbit of the JWST so that it orbits the Sun with a period of one Earth year – and so JWST stays in the same position relative to the Earth.

  • The advantage of orbiting at L2 is that the satellite can maintain the same orientation with respect to the Sun for long periods. And so the sun-shade can shield the telescope very effectively, allowing it to stay cool.
  • The disadvantage of orbiting at L2 is that it is beyond the orbit of the moon and no manned space-craft has ever travelled so far from Earth. So once launched, there is absolutely no possibility of a rescue mission.

The most expensive object on Earth?

I love the concept of the JWST. At an estimated cost of $8 billion $10 billion, if this is not the most expensive single object on Earth, then I would be interested to know what is.

But it has not been created to make money or as an act of aggression.

Instead, it has been created to answer the simple question

I wonder what we would see if we looked into deep space at infrared wavelengths.”. 

Ultimately, we just don’t know until we look.

In a year or two, engineers will place the JWST on top of an Ariane rocket and fire it into space. And the most expensive object on Earth will then – hopefully – become the most expensive object in space.

Personally I find the mere existence of such an enterprise a bastion of hope in a world full of worry.

Thanks

Many thanks to Jon Arenberg  and Stephanie Sandor-Leahy for the opportunity to see this apogee of science and engineering.

Resources

Breathtaking photographs are available in galleries linked to from this page

Christmas Bonus

Re-posting this article, I remembered why I was in Southern California back in May 2018 – I was attending Dylanfest – a marathon celebration of Bob Dylan’s music as performed by people who are not Bob Dylan.

The pandemic hit Dylanfest like a Hard Rain, but in 2020 they went on-line and produced a superb cover of Subterranean Homesick Blues which I gift to you this Christmas. Look out for the fantastic guitar solo at 1’18” into the video.

And since I am randomly posting performances inspired by Dylan songs, I can’t quite leave without reminding you of the entirely palindromic (!) version of the song by Wierd Al Yankovic.

Rocket Science

January 14, 2021

One of my lockdown pleasures has been watching SpaceX launches.

I find the fact that they are broadcast live inspiring. And the fact they will (and do) stop launches even at T-1 second shows that they do not operate on a ‘let’s hope it works’ basis. It speaks to me of confidence built on the application of measurement science and real engineering prowess.

Aside from the thrill of the launch  and the beautiful views, one of the brilliant features of these launches is that the screen view gives lots of details about the rocket: specifically it gives time, altitude and speed.

When coupled with a little (public) knowledge about the rocket one can get to really understand the launch. One can ask and answer questions such as:

  • What is the acceleration during launch?
  • What is the rate of fuel use?
  • What is Max Q?

Let me explain.

Rocket Science#1: Looking at the data

To do my study I watched the video above starting at launch, about 19 minutes 56 seconds into the video. I then repeatedly paused it – at first every second or so – and wrote down the time, altitude (km) and speed (km/h) in my notebook. Later I wrote down data for every kilometre or so in altitude, then later every 10 seconds or so.

In all I captured around 112 readings, and then entered them into a spreadsheet (Link). This made it easy to convert the  speeds to metres per second.

Then I plotted graphs of the data to see how they looked: overall I was quite pleased.

Click for a larger image. Speed (m/s) of Falcon 9 versus time after launch (s) during the Turksat 5A launch.

The velocity graph clearly showed the stage separation. In fact looking in detail, one can see the Main Engine Cut Off (MECO), after which the rocket slows down for stage separation, and then the Second Engine Start (SES) after which the rocket’s second stage accelerates again.

Click for a larger image. Detail from graph above showing the speed (m/s) of Falcon 9 versus time (s) after launch. After MECO the rocket is flying upwards without power and so slows down. After stage separation, the second stage then accelerates again.

It is also interesting that acceleration – the slope of the speed-versus-time graph – increases up to stage separation, then falls and then rises again.

The first stage acceleration increases because the thrust of the rocket is almost constant – but its mass is decreasing at an astonishing 2.5 tonnes per second as it burns its fuel!

After stage separation, the second stage mass is much lower, but there is only one rocket engine!

Then I plotted a graph of altitude versus time.

Click for a larger image. Altitude (km) of Falcon 9 versus time after launch (s) during the Turksat 5A launch.

The interesting thing about this graph is that much of the second stage is devoted to increasing the speed of the second stage at almost constant altitude – roughly 164 km above the Earth. It’s not pushing the spacecraft higher and higher – but faster and faster.

About 30 minutes into the flight the second stage engine re-started, speeding up again and raising the altitude further to put the spacecraft on a trajectory towards a geostationary orbit at 35,786 km.

Rocket Science#2: Analysing the data for acceleration

To estimate the acceleration I subtracted each measurement of speed from the previous measurement of speed and then divided by the time between the two readings. This gives acceleration in units of metres per second, but I thought it would be more meaningful to plot the acceleration as a multiple of the strength of Earth’s gravitational field g (9.81 m/s/s).

The data as I calculated them had spikes in because the small time differences between speed measurements (of the order of a second) were not very accurately recorded. So I smoothed the data by averaging 5 data points together.

Click for a larger image. Smoothed Acceleration (measured in multiples of Earth gravity g) of Falcon 9 versus time after launch (s) during the Turksat 5A launch. Also shown as blue dotted line is a ‘theoretical’ estimate for the acceleration assuming it used up fuel as a uniform rate.

The acceleration increased as the rocket’s mass reduced reaching approximately 3.5g just before stage separation.

I then wondered if I could explain that behaviour.

  • To do that I looked up the launch mass of a Falcon 9 (Data sources at the end of the article and saw that it was 549 tonnes (549,000 kg).
  • I then looked up the mass of the second stage 150 tonnes (150,000 kg).
  • I then assumed that the mass of the first stage was almost entirely fuel and oxidiser and guessed that the mass would decrease uniformly from T = 0 to MECO at T = 156 seconds. This gave a burn rate of 2558 kg/s – over 2.5 tonnes per second!
  • I then looked up the launch thrust from the 9 rocket engines and found it was 7,600,000 newtons (7.6 MN)
  • I then calculated the ‘theoretical’ acceleration using Newton’s Second Law (a = F/m) at each time step – remembering to decrease the mass by 2.558 kilograms per second. And also remembering that the thrust has to exceed 1 x g before the rocket would leave the ground!

The theoretical line (– – –) catches the trend of the data pretty well. But one interesting feature caught my eye – a period of constant acceleration around 50 seconds into the flight.

This is caused by the Falcon 9 throttling back its engines to reduce stresses on the rocket as it experiences maximum aerodynamic pressure – so-called Max Q – around 80 seconds into flight.

Click for a larger image. Detail from the previous graph showing smoothed Acceleration (measured in multiples of Earth gravity g) of Falcon 9 versus time after launch (s) during the Turksat 5A launch. Also shown as blue dotted line is a ‘theoretical’ estimate for the acceleration assuming it used up fuel as a uniform rate. Highlighted in red are the regions around 50 seconds into flight when the engines are throttled back to reduce the speed as the craft experience maximum aerodynamic pressure (Max Q) about 80 seconds into flight.

Rocket Science#3: Maximum aerodynamic pressure

Rocket’s look like they do – rocket shaped – because they have to get through Earth’s atmosphere rapidly, pushing the air in front of them as they go.

The amount of work needed to do that is generally proportional to the three factors:

  • The cross-sectional area A of the rocket. Narrower rockets require less force to push through the air.
  • The speed of the rocket squared (v2). One factor of v arises from the fact that travelling faster requires one to move the same amount of air out of the way faster. The second factor arises because moving air more quickly out of the way is harder due to the viscosity of the air.
  • The air pressure P. The density of the air in the atmosphere falls roughly exponentially with height, reducing by approximately 63% every 8.5 km.

The work done by the rocket on the air results in so-called aerodynamic stress on the rocket. These stresses – forces – are expected to vary as the product of the above three factors: A P v2. The cross-sectional area of the rocket A is constant so in what follows I will just look at the variation of the product P v2.

As the rocket rises, the pressure falls and the speed increases. So their product P v, and functions like P v2, will naturally have a maximum value.

The importance of the maximum of the product P v2 (known as Max Q) as a point in flight, is that if the aerodynamic forces are not uniformly distributed, then the rocket trajectory can easily become unstable – and Max Q marks the point at which the danger of this is greatest.

The graph below shows the variation of pressure P with time during flight. The pressure is calculated using:

Where the ‘1000’ is the approximate pressure at the ground (in mbar), h is the altitude at a particular time, and h0 is called the scale height of the atmosphere and is typically 8.5 km.

Click for a larger image. The atmospheric pressure calculated from the altitude h versus time after launch (s) during the Turksat 5A launch.

I then calculated the product P v2, and divided by 10 million to make it plot easily.

Click for a larger image. The aerodynamic stresses calculated from the altitude and speed versus time after launch during the Turksat 5A launch.

This calculation predicts that Max Q occurs about 80 seconds into flight, long after the engines throttled down, and in good agreement with SpaceX’s more sophisticated calculation.

Summary 

I love watching the Space X launches  and having analysed one of them just a little bit, I feel like understand better what is going on.

These calculations are well within the capability of advanced school students – and there are many more questions to be addressed.

  • What is the pressure at stage separation?
  • What is the altitude of Max Q?
  • The vertical velocity can be calculated by measuring the rate of change of altitude with time.
  • The horizontal velocity can be calculated from the speed and the vertical velocity.
  • How does the speed vary from one mission to another?
  • Why does the craft aim for a particular speed?

And then there’s the satellites themselves to study!

Good luck with your investigations!

Resources

And finally thanks to Jon for pointing me towards ‘Flight Club – One-Click Rocket Science‘. This site does what I have done but with a good deal more attention to detail! Highly Recommended.

 

The James Webb Space Telescope

May 10, 2018

Last week I was on holiday in Southern California. Lucky me.

Lucky me indeed. During my visit I had – by extreme good fortune – the opportunity to meet with Jon Arenberg – former engineering director of the James Webb Space Telescope (JWST).

And by even more extreme good fortune I had the opportunity to speak with him while overlooking the JWST itself – held upright in a clean room at the Northrop Grumman campus in Redondo Beach, California.

[Sadly, photography was not allowed, so I will have to paint you a picture in words and use some stock images.]

The JWST

In case you don’t know, the JWST will be the successor to the Hubble Space Telescope (HST), and has been designed to exceed the operational performance of the HST in two key areas.

  • Firstly, it is designed to gather more light than the HST. This will allow the JWST to see very faint objects.
  • Secondly, it is designed to work better with infrared light than the HST. This will allow the JWST to see objects whose light has been extremely red-shifted from the visible.

A full-size model of the JWST is shown below and it is clear that the design is extraordinary, and at first sight, rather odd-looking. But the structure – and much else besides – is driven by these two requirements.

JWST and people

Requirement#1: Gather more light.

To gather more light, the main light-gathering mirror in the JWST is 6.5 metres across rather than just 2.5 metres in the HST. That means it gathers around 7 times more light than the HST and so can see fainter objects and produce sharper images.

1280px-JWST-HST-primary-mirrors.svg

Image courtesy of Wikipedia

But in order to launch a mirror this size from Earth on a rocket, it is necessary to use a  mirror which can be folded for launch. This is why the mirror is made in hexagonal segments.

To cope with the alignment requirements of a folding mirror, the mirror segments have actuators to enable fine-tuning of the shape of the mirror.

To reduce the weight of such a large mirror it had to be made of beryllium – a highly toxic metal which is difficult to machine. It is however 30% less dense than aluminium and also has a much lower coefficient of thermal expansion.

The ‘deployment’ or ‘unfolding’ sequence of the JWST is shown below.

Requirement#2: Improved imaging of infrared light.

The wavelength of visible light varies from roughly 0.000 4 mm for light which elicits the sensation we call violet, to 0.000 7 mm for light which elicits the sensation we call red.

Light with a wavelength longer than 0.000 7 mm does not elicit any visible sensation in humans and is called ‘infrared’ light.

Imaging so-called ‘near’ infrared light (with wavelengths from 0.000 7 mm to 0.005 mm) is relatively easy.

Hubble can ‘see’ at wavelengths as long as 0.002 5 mm. To achieve this, the detector in HST was cooled. But to work at longer wavelengths the entire telescope needs to be cold.

This is because every object emits infrared light and the amount of infrared light it emits is related to its temperature. So a warm telescope ‘glows’ and offers no chance to image dim infrared light from the edge of the universe!

The JWST is designed to ‘see’ at wavelengths as long as 0.029 mm – 10 times longer wavelengths than the HST – and that means that typically the telescope needs to be on the order of 10 times colder.

To cool the entire telescope requires a breathtaking – but logical – design. There were two parts to the solution.

  • The first part involved the design of the satellite itself.
  • The second part involved the positioning the satellite.

Cooling the telescope part#1: design

The telescope and detectors were separated from the rest of the satellite that contains elements such as the thrusters, cryo-coolers, data transmission equipment and solar cells. These parts need to be warm to operate correctly.

The telescope is separated from the ‘operational’ part of the satellite with a sun-shield roughly the size of a tennis court. When shielded from the Sun, the telescope is exposed to the chilly universe, and cooled gas from the cryo-coolers cools some of the detectors to just a few degrees above absolute zero.

Cooling the telescope part#2: location

The HST is only 300 miles or so from Earth, and orbits every 97 minutes. It travels in-to and out-of full sunshine on each orbit. This type of orbit is not compatible with keeping a gigantic telescope cold.

So the second part of the cooling strategy is to position the JWST approximately 1 million miles from Earth at a location beyond the orbit of the moon at a location known as the second Lagrange point L2. But JWST does not orbit the Earth like Hubble: it orbits the Sun.

Normally the period of orbits around the Sun get longer as satellites orbit at greater distances from the Sun. But at the L2 position, the gravitational attraction of the Earth and Moon add to the gravitational attraction of the Sun and speed up the orbit of the JWST so that it orbits the Sun with a period of one Earth year – and so JWST stays in the same position relative to the Earth.

  • The advantage of orbiting at L2 is that the satellite can maintain the same orientation with respect to the Sun for long periods. And so the sun-shade can shield the telescope very effectively, allowing it to stay cool.
  • The disadvantage of orbiting at L2 is that it is beyond the orbit of the moon and no manned space-craft has ever travelled so far from Earth. So once launched, there is absolutely no possibility of a rescue mission.

The most expensive object on Earth?

I love the concept of the JWST. At an estimated cost of $8 billion $10 billion, if this is not the most expensive single object on Earth, then I would be interested to know what is.

But it has not been created to make money or as an act of aggression.

Instead, it has been created to answer the simple question

I wonder what we would see if we looked into deep space at infrared wavelengths.”. 

Ultimately, we just don’t know until we look.

In a year or two, engineers will place the JWST on top of an Ariane rocket and fire it into space. And the most expensive object on Earth will then – hopefully – become the most expensive object in space.

Personally I find the mere existence of such an enterprise a bastion of hope in a world full of worry.

Thanks

Many thanks to Jon Arenberg  and Stephanie Sandor-Leahy for the opportunity to see this apogee of science and engineering.

Resources

Breathtaking photographs are available in galleries linked to from this page

 

Gravity Wave Detector#2

July 15, 2017

GEO600 One arm

GEO600

After presenting a paper at the European Society of Precision Engineering and Nanotechnology (EUSPEN) in Hannover back in May, I was offered the chance to visit a Gravity Wave Detector. Wow! I jumped at the opportunity!

The visiting delegation were driven in a three-minibus convoy for about 30 minutes, ending up in the middle of a field of cabbages.

After artfully turning around and re-tracing our steps, we found a long, straight, gated track running off the cabbage-field track.

Near the gate was a shed, and alongside the road ran some corrugated sheet covering what looked like a drainage ditch.

These were the only clues that we were approaching one of the most sensitive devices that human beings have ever built: the GEO600 gravity-wave detector(Wikipedia or GEO600 home page)

Even as we drove down the road, the device in ‘the ditch’ was looking for length changes in the 600 metre road of less than one thousandth the diameter of a single proton.

Nothing about how to achieve such sensitivity is obvious. And as my previous article made clear, there have been many false steps along the way.

But even the phenomenal sensitivity of this detector turns out be not quite good enough to detect the gravity waves from colliding black holes.

In order to detect recent events GEO600 would have to have been between 3 and 10 times more sensitive.

The measuring principle

The GEO600 device as it appears above ground is illustrated in the drone movie above.

It consists of a series of huts and an underground laboratory at the intersection of two 600 metre long ‘arms’.

In the central laboratory, a powerful (30 watt) laser shines light of a single wavelength onto a beam-splitter: a piece of glass with a thin metal coating.

The beam-splitter reflects half the light and transmits the other other half, creating two beams which travel at 90° to each other along the two arms of the device.

At the end of the arms, a mirror reflects the light back to the beam-splitter and onto a light detector where the beams re-combine.

Aside from the laser, all the optical components are suspended from anti-vibration mountings inside vacuum tubes about 50 cm in diameter.

When set up optimally, the light traversing the two arms interferes destructively, giving almost zero light signal at the detector.

But a motion of one mirror by half of a wavelength of light (~0.0005 millimetres), will result in a signal going from nearly zero watts (when there is destructive interference) to roughly 30 watts (when there is constructive interference).

So this device – which is called a Michelson Interferometer – senses tiny differences in the path of light in the two arms. These differences might be due to the motion of one of the mirrors, or due to light in one arm being delayed with respect to light in the other arm.

Sensitivity

The basic sensitivity to motion can be calculated (roughly) as follows.

Shifting one mirror by one half a wavelength (roughly 0.0005 millimetres) results in an optical signal increasing from near zero to roughly 30 watts, a sensitivity of around 60,000 watts per millimetre.

Modern silicon detectors can detect perhaps a pico-watt (10-12 watt) of light.

So the device can detect a motion of just

10-12 watts ÷ 60000 watts per millimetre

or roughly 2 x 10-17 mm which is 10-20 metres. Or one hundred thousandth the diameter of a proton!

If the beam paths are each 600 metres long then the ability to detect displacements is equivalent to a fractional strain of roughly 10-23 in one beam path over the other.

So GEO600 could, in principle, detect a change in length of one arm compared to the other by a fraction:

0.000 000 000 000 000 000 000 01

There are lots of reasons why this sensitivity is not fully realised, but that is the basic operating principle of the interferometer.

The ‘trick’ is isolation

The scientists running the experiment think that a gravity wave passing through the detector will cause tiny, fluctuating changes in the length of one arm of GEO600 compared with the other arm.

The changes they expect are tiny which is why they made GEO600 so sensitive.

But in the same way that a super-sensitive microphone in a noisy room would just makes the noise appear louder, so GEO600 is useless unless it can be isolated from noise and vibrations.

So the ‘trick’ is to place this extraordinarily sensitive ‘microphone’ into an extraordinarily ‘quiet’ environment. This is very difficult.

If one sits in a quiet room, one can slowly become aware of all kinds of noises which were previously present, but of which one was unaware:

  • the sound of the flow of blood in our ears:
  • the sound of the house ‘creaking’
  • other ‘hums’ of indeterminate origin.

Similarly GEO600, can ‘hear’ previously unimaginably ‘quiet’ sounds:

  • the ground vibrations of Atlantic waves crashing on the shores of Europe:
  • the atom-by-atom ‘creeping’ of the suspension holding the mirrors

Results

So during an experiment, the components of GEO600 sit in a vacuum and the mirrors and optical components are suspended from silica (glass) fibres, which are themselves suspended from the end of a spring-on-a-spring-on-a-spring!

In the photograph below, the stainless steel vacuum vessels containing the key components can be seen in the underground ‘hub’ at the intersection of the two arms.

GEO600 Beam Splitter

They are as isolated from the ‘local’ environment as possible.

The output of the detector – the brightness of the light on the detector is shown live on one of the many screens in the control ‘hut’.

GEO 600 Control Centre

But instead of a graph of ‘brightness versus time, the signal is shown as a graph of the frequencies of vibration detected by the silicon detector.

Results

The picture below shows a graph of the strain – the difference in length of the two arms – detected at different frequencies.

[Please note the graph is what scientists call ‘logarithmic’. This means that a given distance on either axis corresponds to a constant multiplier. So the each group of horizontal lines corresponds to a change in strain by a factor 10, and the maximum strain shown on the vertical 10,000 times larger than the smallest strain shown.]

Sensitivity Curve

The picture above shows two traces, which both have three key features:

  • The blue curve showed the signal being detected as we watched. The red curve was the best performance of the detector. So the detector was performing close to its optimal performance.
  • Both curves are large at low frequencies, have a minimum close to 600 Hz, and then rise slowly. This is the background noise of the detector. Ideally they would like this to be about 10 times lower, particularly at low frequencies.
  • Close to the minimum is a large cluster of spikes: these are the natural frequencies of vibration of the mirror suspensions and the other optical components.
  • There are lots of spikes caused by specific noise sources in the environment.

If a gravity wave passed by…

…it would appear as a sudden spike at a particular frequency, and this frequency would then increase, and finally the spike would disappear.

It would be over in less than a second.

And how could they tell it was a gravity wave and not just random noise? Well that’s the second trick: gravity wave detectors hunt in pairs.

The signal from this detector is analysed alongside signals from other gravity wave detectors located thousands of kilometres away.

If the signal came from a gravity wave, then they would expect to see a similar signal in the second detector either just before or just afterwards – within a ‘time window’ consistent with a wave travelling at the speed of light.

Reflections

Because powerful lasers were in use, visitors were obliged to wear laser google!

Because powerful lasers were in use, visitors were obliged to wear laser goggles!

This was the second gravity wave detector I have seen that has never detected a gravity wave.

But I have seen this in the new era where we now know these waves exist.

People have been actively searching for these waves for roughly 50 years and I am filled with admiration for the nobility of the researchers who spent their careers fruitlessly searching and failing to find gravity waves.

But the collective effect of these decades of ‘failure’ is a collective success: we now know how to the ‘listen’ to the Universe in a new way which will probably revolutionise how we look at the Universe in the coming centuries.

A 12-minute Documentary

Gravity Wave Detector#1

July 6, 2017
Me and Albert Einstein

Not Charlie Chaplin: That’s me and Albert Einstein. A special moment for me. Not so much for him.

I belong to an exclusive club! I have visited two gravity wave detectors in my life.

Neither of the detectors have ever detected gravity waves, but nonetheless, both of them filled me with admiration for their inventors.

Bristol, 1987 

In 1987, the buzz of the discovery of high-temperature superconductors was still intense.

I was in my first post-doctoral appointment at the University of Bristol and I spent many late late nights ‘cooking’ up compounds and carrying out experiments.

As I wandered around the H. H. Wills Physics department late at night I opened a door and discovered a secret corridor underneath the main corridor.

Stretching for perhaps 50 metres along the subterranean hideout was a high-tech arrangement of vacuum tubing, separated every 10 metres or so by a ‘castle’ of vacuum apparatus.

It lay dormant and dusty and silent in the stillness of the night.

The next day I asked about the apparatus at morning tea – a ritual amongst the low-temperature physicists.

It was Peter Aplin who smiled wryly and claimed ownership. Peter was a kindly antipodean physicist, a generalist – and an expert in electronics.

New Scientist article from 1975

New Scientist article from 1975

He explained that it was his new idea for a gravity wave detector.

In each of the ‘castles’ was a mass suspended in vacuum from a spring made of quartz.

He had calculated that by detecting ‘ringing’ in multiple masses, rather than in a single mass, he could make a detector whose sensitivity scaled as its Length2 rather than as its Length.

He had devised the theory; built the apparatus; done the experiment; and written the paper announcing that gravity waves had not been detected with a new limit of sensitivity.

He then submitted the paper to Physical Review. It was at this point that a referee had reminded him that:

When a term in L2 is taken from the left-hand side of the equation to the right-hand side, it changes sign. You will thus find that in your Equation 13, the term in L2 will cancel.

And so his detector was not any more sensitive than anyone else’s.

And so…

If it had been me, I think I might have cried.

But as Peter recounted this tale, he did not cry. He smiled and put it down to experience.

Peter was – and perhaps still is – a brilliant physicist. And amongst the kindest and most helpful people I have ever met.

And I felt inspired by his screw up. Or rather I was inspired by his ability to openly acknowledge his mistake. Smile. And move on.

30 years later…

…I visited Geo 600. And I will describe this dramatically scaled-up experiment in my next article.

P.S. (Aplin)

Peter S Aplin wrote a review of gravitational wave experiments in 1972 and had a paper at a conference called “A novel gravitational wave antenna“. Sadly, I don’t have easy access to either of these sources.

 

How would you take a dinosaur’s temperature?

March 15, 2017
A tooth from a tyrannosaurus rex.

A tooth from a tyrannosaurus rex.

Were dinosaurs warm-blooded or cold-blooded?

That is an interesting question. And one might imagine that we could infer an answer by looking at fossil skeletons and drawing inferences from analogies with modern animals.

But with dinosaurs all being dead these last 66 million years or so, a direct temperature measurement is obviously impossible.

Or so I thought until earlier today when I visited the isotope facilities at the Scottish Universities Environmental Research Centre in East Kilbride.

There they have a plan to make direct physical measurements on dinosaur remains, and from these measurements work out the temperature of the dinosaur during its life.

Their cunning three-step plan goes like this:

  1. Find some dinosaur remains: They have chosen to study the teeth from tyrannosaurs because it transpires that there are plenty of these available and so museums will let them carry out experiments on samples.
  2. Analyse the isotopic composition of carbonate compounds in the teeth. It turns out that the detailed isotopic composition of carbonates changes systematically with the temperature at which the carbonate was formed. Studying the isotopic composition of the carbon dioxide gas given off when the teeth are dissolved reveals that subtle change in carbonate composition, and hence the temperature at which the carbonate was formed.
  3. Study the ‘formation temperature’ of the carbonate in dinosaur teeth discovered in a range of different climates. If dinosaurs were cold-blooded, (i.e. unable to control their own body temperature) then the temperature ought to vary systematically with climate. But if dinosaurs were warm-blooded, then the formation temperature should be the same no matter where they lived (in the same way that human body temperature doesn’t vary with latitude).
A 'paleo-thermometer'

A ‘paleo-thermometer’

I have written out the three step plan above, and I hope it sort of made sense.

So contrary to what I said at the start of this article, it is possible – at least in principle – to measure the temperature of a dinosaur that died at least 66 million years ago.

But in fact work like this is right on the edge of ‘the possible’. It ought to work. And the people doing the work think it will work.

But the complexities of the measurement in Step 2 appeared to me to be so many that it must be possible that it won’t work. Or not as well as hoped.

However I don’t say that as a criticism: I say it with admiration.

To be able to even imagine making such a measurement seems to me to be on a par with measuring the cosmic microwave background, or gravitational waves.

It involves stretching everything we can do to its limits and then studying the faint structures and patterns that we detect. Ghosts from the past, whispering to us through time.

I was inspired.

=============================

Thanks to Adrian Boyce and Darren Mark for their time today, and apologies to them both if I have mangled this story!

SI Superheroes

January 12, 2016

Somehow this episode of SI Superheroes came out last May (2015) and I didn’t notice!

If anything, this is even better than the first episode – perhaps because it’s more focussed on a single theme without the need to introduce all the characters.

In case you are unfamiliar with the work of NIST, the US National Institute for Standards and Technology, they are basically the US version of NPL and are a very serious organisation. In my recollection, this is only the second output from NIST that has featured laugh-out-loud moments (which I will not reveal!).

I can foresee great things for these characters.

Remember that Superman, Batman and their friends and foes inhabited a (DC) universe of paper comics for decades.

Then they became TV cartoon characters.

And only relatively recently have they become the stars of the current genre of all action, computer-graphic laden movies.

I wonder if they will be recruiting for a male with slightly older looks to play Dr. Kelvin…

9192631770

Incidentally, the number 9,192,631,770 displayed on the side of the cartoon satellite is the number of oscillations a Caesium atom that defines what we mean by the passage of one second.

At places like NPL and NIST we can make clocks based on Caesium atoms that very perfectly realise this definition.

The atoms in these super-clocks vibrate at  9,192,631,770.000 000 ± 0.000 001 oscillations per second and form the basis of Universal Coordinated Time (UTC)  that is used throughout the world.

One of the difficulties which Major Uncertainty may have tried to exploit is that the number of oscillations per second changes very slightly with changes in the physical environment of the atom.

Some of the environmental parameters that matter for clocks mounted in space are:

  • the strength of the gravitational field,
  • any accelerations that the atom experiences,
  • the  speed of the clock with respect to the person (often on the ground)  counting the oscillations,
  • the temperature of the walls surrounding the atoms.

Anyway – all is well now that the League of SI Superheroes has done their job again.

How Apollo Flew to the Moon

September 6, 2015
The Moon photographed above some beach grass in Northumberland

The Moon photographed above some beach grass in Northumberland

On my recent holiday in Northumberland, I both photographed the moon, and read about how almost 50 years ago, human beings landed on its surface.

This article is a review of the book I read: ‘How Apollo Flew to the Moon‘ by W. David Woods.

Staring at the moon and considering what we now know about its distance from Earth, its size, and its inhospitable surface, is an exercise in bridging emotional and intellectual understanding.

I have long-considered that the Apollo programme of manned spaceflights to the Moon to have been an exemplar of the power of human intellect, and overall one of humanity’s exceptional achievements.

The enormous cost of the programme (4% of the US Federal budget in 1967) was – in my opinion – well justified by the cultural shift it engendered.

We went to the Moon and discovered the Earth‘ is a truth expressed by many, including several of the early astronauts.

However this book is not about the cultural impact of the programme, but about how the journey was made. For anyone with a technical disposition the book will fascinate.

I took all 500 pages of the book on holiday with me and self-indulgently read it slowly from cover to cover: it was enormously enjoyable.

After an overview, the book follows the Apollo 11 mission through all its stages, sprinkling in astronaut comments and explaining the differences between earlier and later missions.

There are many fascinating details, but what came through to me above everything was NASA’s pervasive mindset of constantly, painstakingly, meticulously and expensively planning for failure.

The philosophy of not just being aware that an operation may fail, but making detailed plans for what you will do when it does is a lesson for anyone who wants a complex plan to succeed.

And not only were there back-up plans for failure, there were plans for failure of the back-up plans! Only at one or two key points in the entire mission were there operations which simply had to work.

So, for example, when their spacecraft fired a rocket engine to leave Earth’s orbit and head towards the Moon –  or rather where the Moon was going to be in three days time – the rocket burn placed them into a so-called ‘free-return trajectory‘.

Thus if something went wrong on the voyage, or the rocket engine failed to fire – the spacecraft would sail around the Moon and head straight back to Earth.

When launched towards the Moon, the Apollo spacecraft was placed in a “Circumlunar-free-return-trajectory” . This meant that unless they did something positive to enter the Moon’s orbit, they would return to the Earth. Picture by NickFr Licensed under Public Domain via Wikipedia

Overall, the book is a great read for the technically minded. And in addition to the narrative there are occasional superlatives – like ‘vista-points’ on a highway – where you can stop and simply wonder.

  • The total mechanical output power of five first stage rockets was 60 GW. This is equivalent to peak electrical supply of the entire United Kingdom.
  • On its return from the moon, its speed just before entry into the Earth’s atmosphere was more than 11 kilometres per second.
  • Since Apollo 17 returned in 1972. no human being has been more than 500 miles from Earth’s surface.

The days of our lives

September 30, 2014
MIchael de Podesta is 20,000 days old today.

Michael de Podesta is 20,000 days old today.

Today, 30th September 2014 is a special day: I am 54 years, 9 months and 2 days old!

Special? Yes, because today I am 20,000 days old!

It is natural to mark the passage of time since our birth.

Traditionally we do this by counting the number of times the Earth has orbited the Sun (years) since the day we were born.

We then celebrate when this number reaches a multiple of 10, the number of fingers and thumbs on our hands.

Is it any less arbitrary to count the number of rotations of the Earth about its axis (days) since we were born?

And then celebrate when this number reaches a multiple of 10. Or 100. Or 1000, Or in my advanced case, 10,000.

I don’t expect to see my 30,000th day on Earth (15th February 2042), but I am looking forward to 15th May 2023.

If I am alive, then sometime during that day I will pass my 2 billionth second on Earth! Wow!

On reflection, I realise it is arbitrary to pick any particular unit for counting our age – we should just follow the local convention.

But make sure that we celebrate every second of every minute of every hour of every day of every year. They all pass so quickly.

Happy Whatever 🙂

=================

You can plan the dates for your own celebrations using this excellent web site.


%d bloggers like this: