Another thought on Higgs

Higgs boson: Proton-proton collisions as measured by Cern

Another incomprehensible image typically used to illustrate stories about the Higgs Boson. It shows ‘things’ shooting out from the point where two protons have been smashed together. Picture stolen from The Guardian

I had one more thought about the recent discovery of the Higgs particle: if the Higgs is the particle which gives ‘mass’ to all the other particles, then surely the nature of the Higgs must be linked to the nature of gravity?

As you may be aware, the concept of ‘mass’ enters our lives in two quite distinct ways: as inertial mass and as gravitational mass.

  • Inertial mass is the property of an object which makes it harder to speed up or slow down. This is encapsulated in Newton’s Second Law of Motion: that the amount of force required to achieve a given acceleration is related to the inertial mass of the object.
  • Gravitational mass is the property of an object which makes it attract other objects at a distance through space. This is encapsulated in Newton’s Law of Universal Gravitation: that all the matter in the universe attracts all the other matter with a force which is inversely proportional to the square of the distance between the objects, .

Einstein was fascinated by the simple observation that inertial and gravitational mass were – as well as can be measured – always exactly equal. From this insight he was inspired to derive his General Theory of Relativity which is based on the central tenet – the principle of equivalence – that these two types of mass are not in fact two distinct properties, but one single property.

When scientists say the Higgs particle is responsible for giving ‘mass’ to all the other particles, they mean inertial mass. But this will also have a gravitational effect. I have not seen any discussion of this feature in the news, but surely, if the Higgs particle gives rise to both types of mass, it must provide some kind of link between the two different manifestations of mass. Discovering any kind of connection at all between the Electroweak force, the Strong force and Gravity would really be a major step forward in our understanding of the Universe.

Or maybe I have completely missed the point?


Tags: ,

2 Responses to “Another thought on Higgs”

  1. David Bailin Says:

    As you say, the Higgs mechanism gives masses to all (truly elementary) particles, except those like the photon, gluons (and graviton) that are protected by an unbroken gauge symmetry. But that certainly does not account for most of the mass of ordinary matter like us. Most of the mass of neutrons and protons derives from non-perturbative strong interaction effects in the gluons (and quark-anti-quark pairs) that bind the valence quarks in the nucleon. That’s what the lattice QCD people have spent so long and so much money trying to compute. The nucleon masses would hardly change even if there was no Higgs effect. Gravity is coupled to anything with a non-zero energy momentum tensor, and that certainly includes the “condensate” in the nucleons, as well as the Higgs field.

  2. David Bailin Says:

    I suppose I should have added that I don’t know either why inertial and gravitational masses are equal, but I don’t see that it’s got much to do with the Higgs mechanism.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: